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Summary of Accomplishments

During the year May 21, 1980 to May 20, 1981 we have accomplished some 
work in each of the three areas proposed for study: (i) interaction of 
slipping zones on faults; (ii) inception of shear rupture; and (iii) effects 
of coupling between deformation and pore fluid diffusion on rupture.

i 
Interaction of Slipping Zones

Rudnicki and Kanamori (1981) have used existing quasi-static solutions 
for collinear shear cracks to examine quantitatively the effects of fault 
slip zone interaction on determinations of moment,stress drop, and static 
strain energy release. In addition, these calculations provide specific 
numerical examples of the general relations between moment and stress drop 
derived by Madariaga (JGR, 84, 2243-2250, 1979) and illustrate the extent to 
which small strong asperities or barriers can control the pattern of stress 
release.

As a preliminary to an examination of the dynamic effects of slip zone 
interaction, Rudnicki and Freund (1981) have reexamined the relationships 
among various expressions for the energy radiated by elastodynamic seismic 
sources. Both farfield representations and Kostrov's (Izv. Earth Physics, 
JL, 23-40, 1974) representation of radiated energy in terms of fault surface 
traction and particle velocity are examined. In particular, Kostrov's 
representation is arranged in various forms to reveal the source of radiated 
energy as the deviations of the fault surface tractions and particle velocities 
from the values that would occur during quasistatic fault motion between the 
same end states. Moreover, the excess of the static strain energy change 
over the work done by the fault surface tractions, called WQ by Kanamori 
(JGR, 82, 2981-2987, 1977), is shown to be a good approximation to the radi­ 
ated energy when fault propagation speed is near the Rayleigh wave velocity 
and the time rate of change of fault surface tractions is small. Because 
Kanamori has shown that for large earthquakes WQ is approximately equal to 
the Gutenberg-Richter energy, one possible inference is that the conditions 
for which WQ is approximately equal to the radiated energy are satisfied 
for large earthquakes.



Inception of Shear Rupture

Our work in this area has concentrated on an extension of Rice's (JGR, 
80, 1531-1536, 1975) analysis of the stability of dilatant hardening for a 
layer subjected to simple shear. In particular, we are examining the response 
in the case of a finite-size nonuniformity in the form of a sublayer already 
weakened, perhaps by past faulting. An analysis that linearizes the response 
of the weakened layer and that of the surrounding material about undrained 
(no change in fluid mass content) homogeneous deformation demonstrates the 
competing effects of increasing tectonic stress and pore fluid diffusion in 
aggravating and mitigating, respectively, the tendency for the deformation 
to concentrate in the weakened layer. A graduate student, G. L. Bowers, has 
been formulating a direct numerical solution of the problem. Numerical solu­ 
tions demonstrate that dilatant hardening can delay failure by comparison with 
its occurrence in dry rock. Moreover, although Rice's (1975) analysis demon­ 
strated that homogeneous undrained response became unstable, in the sense that 
local nonuniformities grow exponentially in time when the underlying drained 
response passes peak, the numerical results suggest that at higher rates of 
boundary displacement the material can be driven to a load maximum instability 
before significant growth of these nonuniformities can occur. However, for 
imposed strain-rates representative of tectonic processes (~ lO"1^ sec""1) 
essentially drained conditions prevail until very near instability and dilatant 
hardening appears to be ineffective at increasing either the maximum stress or 
the maximum average strain of the layer. Consequently, the analysis does not 
yield evidence that dilatant hardening of an existing fault zone can transfer 
inelastic deformation and cracking to a much larger volume and cause accompany­ 
ing precursory changes in material properties.

Coupled-Deformation Diffusion Effects

In addition to the above-mentioned work on dilatant hardening, which also 
involves coupled deformation diffusion effects, we have accomplished some 
additional work in this area.

Rudnicki (1980) has reviewed predictions for processes preparatory to 
earthquakes based on an inclusion model of earth faulting (Rudnicki, JGR, 
82., 844-854, 1977; Rice and Rudnicki, JGR, 84^, 2177-2193, 1979) for both dry 
and fluid-saturated rock masses. This review includes an interpretation of 
recent experimental results by Martin (GRL, ]_, 404-406, 1980) on the stabili­ 
zation by dilatant hardening of failure in Westerly granite.

Rudnicki (1981) has also obtained a useful rearrangement of Cleary's 
(Int. J. Solids Struc., 13, 785-808, 1977) solution for the sudden application 
of a point force at the origin in a linear fluid-infiltrated porous elastic 
solid. In particular, the stress and displacement fields are demonstrated to 
comprise a time independent portion, the classical elastic solution based on 
the undrained (short-time) moduli, and a time dependent portion, the solution 
for a continuous fluid mass dipole. A corollary of this result is that the 
time dependent functions entering the point force solution can be obtained 
from a single function entering the displacement solution for a fluid mass 
source. Rudnicki has used singlular solutions constructed from the point 
force solution to reconstruct, by placing appropriate point singularities at 
the origin, the solution of Rice, Rudnicki, and Simons (Int. J. Solids Struc.,



14, 289-303, 1978) for the response of a fluid-infiltrated porous elastic 
solid containing a spherical cavity or inclusion. It is hoped that this tech­ 
nique may be used to obtain solutions for more complex geometries.
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INTRODUCTION

The purpose of these studies is to examine theoretical models for the 

rupture of geological materials in order to better understand the physical 

processes that precede and accompany earthquakes. Particular attention is 

given to processes that may make it possible to anticipate the occurrence of 

earthquake faulting. Specific studies in the following three areas are under­ 

way: (i) localization of deformation as a model for the inception of shear 

rupture; (ii) transient stabilization of rupture by coupling of deformation 

with diffusion of an infiltrating pore fluid; and (iii) interaction of slip­ 

ping zones on faults and frictional surfaces. This report describes our work 

in each of these areas during the year May 20, 1980 to May 20, 1981. Some of 

the work in area (iii) involved the completion of two studies (Rudnicki and 

Kanamori (1981) and Rudnicki and Freund (1981)) that were begun in the interim 

between submission of the original proposal (February, 1979) and the beginning 

of funding (June, 1980). Only a brief summary of this work is given in the 

text; a complete description is given in Appendix III and Appendix IV which 

reproduce the published manuscripts. Our main effort during the last six 

months of the contract has been in area (i) where we have been investigating 

coupled deformation diffusion effects on localization of deformation.



INCEPTION OF SHEAR RUPTURE

Because most earthquakes seem to occur on existing fault systems, many 

models of the earthquake processes assume that inelastic deformation is con­ 

fined to the fault itself. However, many observations of changes in physical 

properties that have been suggested as possible precursors to earthquakes, 

for example, changes in resistivity, radon emission or seismic wave speed, 

imply cracking due to inelastic deformation over a region that is not confined 

to the vicinity of the fault. One possible means by which inelastic deforma­ 

tion can be transferred laterally from an existing fault zone has been suggested 

by Rice (1975): if ground water is present, dilatant hardening of the fault 

zone could cause adjacent regions to accommodate inelastic deformation. In 

order to investigate this possiblity, work in this area has focused on an 

extension of Rice's (1975) analysis of the stability of dilatant hardening 

for a fluid-saturated rock layer deformed in shear. Rice demonstrated that 

the dilatantly hardened response became unstable in the sense that infinites­ 

imal nonuniformities grow exponentially in time when the underlying drained 

(constant pore fluid pressure) response satisfies the conditions for localiza­ 

tion of deformation (Rudnicki and Rice, 1975). Our extension of this analysis 

considers the effect of a finite-size nonuniformity in the form of a sublayer 

with material properties that differ slightly from those of the surrounding 

material. In this case there are competing effects due to the rate of increase 

in applied shear (assumed to idealize tectonic loading) and the rate of pore 

fluid diffusion. The former tends to further concentrate the deformation in 

the initially weakened layer whereas the latter tends to transfer deformation 

from the initially weakened layer to adjacent material. In addition to the 

direct relevance of this problem to precursory processes, we hope that our 

analysis will make possible quantitative comparison of the theoretical



predictions with experiments on dilatant hardening by Brace and Martin (1968) 

and by Martin (1980). Rudnicki (1980) has recently reviewed the results of 

the experiments by Martin (1980) in the context of predictions by Rice and 

Rudnicki (1979) on the stabilization of failure by dilatant hardening for an 

inclusion model of earthquake faulting (see Appendix I).

For simplicity, we have begun our analysis by studying the same geometric 

configuration analyzed by Rice (1975): one dimensional deformation of a layer 

(Figure 1). Because displacements depend only on y, the only non-zero strains 

are

Y(y, t) = 8ux (y, t)/8y, e(y, t) = 9uy (y, t)/3y (1)

The stresses conjugate to the strains are T and a (positive in compression), 

respectively, and, as shown by Rice (1975), equilibrium in the absence of body 

forces requires that these stresses be only a function of time t. We also 

adopt the constitutive rate law proposed by Rice (1975). For drained response, 

that is, constant pore fluid pressure response, this law is as follows:

y = T/G + (T - ya)/H
(2) 

e = - a/M + £(T - ya)/H

G and M are elastic moduli and hence the first term in each equation is the 

elastic strain rate. The second term in each equation is the inelastic con­ 

tribution and these terms are dropped for deformation increments that tend to 

cause elastic unloading, that is, deformation increments for which T < ya. 

The parameter y is a friction coefficient expressing the inhibiting effect 

of hydrostatic compression on inelastic deformation, 3 is a dilatancy factor 

equal to the ratio of inelastic increments of volume strain to shear strain, 

and H is an inelastic modulus termed hardening if positive or softening if 

negative. The modulus H is related to the slope of the T versus y curve 

at constant a by



A A -H = 37 (1 + W (o = constant >

To describe the response during arbitrary variations in the pore fluid pres­ 

sure, one simply replaces the stress a by the effective stress a = a - p, 

where p is the pore fluid pressure. This form of the effective stress is 

appropriate for inelastic deformation arising from frictional sliding on 

fissure surfaces and microcracking from the tips of sharp flaws (Rice, 1977) 

and for elastic deformation if the solid and fluid constituents are incom­ 

pressible. Here we will specialize to the case of incompressible constituents 

in order to simplify the notation although the case of compressible constit­ 

uents can be treated in the same manner. Thus, replacing a by a - p in 

(2) yields

Y = T/G + [T - y(a - p)]/H (4) 

e = - (a - p)/M + &[T - y(a - p)]/H . (5) 

An additional constitutive equation is Darcy's law which, in the absence 

of body forces, can be written as

q = - PK 9p/9y (6) 

where p is the density of fluid mass, K is a permeability, and q is the 

mass flow rate per unit area in the y direction. As noted earlier, the 

equilibrium equations simply require that T and a be functions only of 

time. The remaining relevant field equation is fluid mass conservation. In 

the case of incompressible constituents, fluid mass conservation requires that

'ff+pfi=0 (7)

Substituting Darcy's law (6) into this equation yields

3 I 1P\ 3eay (pK W = p at



or, for constant p and K ,

8 p _ 3e / 0 \ K   £ - -~f (8)*/ 9t

For undrained (no change in fluid mass content) homogeneous deformation, 

= 0 and, hence, solving (5) for p yields

(g) V ;H

where, for convenience, a(t) has been assumed constant. Substituting (9) 

into (4) reveals that the effective value of the hardening modulus has been 

augmented form H to H + y3M for undrained response. This effective stiffen­ 

ing of the response is referred to as dilatant hardening and occurs as a result 

of' the tendency of dilatancy to decrease the pore fluid pressure (9). If the 

decrease of pore fluid pressure occurs faster than it can be alleviated by 

fluid mass diffusion, the effective compressive stress increases and this 

increase inhibits further inelastic response.

Our studies have considered the response to the equations described above 

when there is an initial nonuniformity in the form of a sublayer having inelas­ 

tic material properties differing slightly from those of the remainder of the 

material. One approach examines perturbations about the undrained homogeneous 

response. That is, the layer is assumed to be deformed to some point in homo­ 

geneous undrained fashion and then the subsequent response is considered when 

the layer is divided into two sublayers with slightly different hardening 

moduli. The response in each sublayer is then linearized. This analysis has 

been described in our Semi-Annual Technical Report No. 1 (January 9, 1981) 

and will not be repeated here.

Numerical Approach

A second approach to this problem is a direct numerical solution by a



graduate student, G. L. Bowers, as a portion of his Ph.D. thesis. The 

geometry is shown in Figure 1 where, because of symmetry, only the upper half 

is drawn. The equations can be recast in a form more suitable for numerical 

analysis by substituting (5) into (8) and using (4) to eliminate T. The 

result is

(H + G) ^£ 8p_ MG ^_ _
H + G + u3M .2 at H + 6 + oy

where, for convenience, it has been assumed that a = 0. Because the harden­ 

ing modulus H depends on the strain, (10) must be solved simultaneously with 

the relation (4) for T subject to the equilibrium condition that

f^- 0 + T-T(t) . (11)

Note that the coefficient of the first term in (10) is a diffusivity that 

depends on the deformation through H. The quantity c = MK is the diffu­ 

sivity appropriate for elastic deformation (H -> °°) . By choosing the length 

scale as the half-layer thickness L and the time scale as L/U, the inverse 

of the average shear strain rate, (10) can be rewritten as 

c x H + G 82 P ap _ SMG _ 
H + G + ^M a(y/L) 2 " a(flt/L) " H + G + ̂ 3M B(Ot/L)

This form of the equation reveals the significance of the nondimensional 

parameter

which is the product of the average shear strain rate U/L and a diffusion
2 time for elastic deformation tD = L /c, and, hence, is a measure of the

relative time scales associated with boundary straining and pore fluid diffu­ 

sion. For rapid straining r\ will be large, the coefficient of the first 

term in (12) will be small (unless H is negative and so large in magnitude



that it approaches y&M) and the effects of diffusion will be relatively 

insignificant. Conversely, for smaller values of n diffusion will be more 

important.

Symmetry requires that the boundary conditions on y = 0 be

ux = 0 and q = - K |£ = 0 . 

At y = L the boundary conditions are 

q = 0 , ux = U

In addition, the displacements, pore fluid pressure and fluid mass flux must 

be continuous at y = JL where the material properties were assumed to change. 

(The stresses are already required by equilibrium to be continuous.) The 

initial conditions are

p = 0 , u = 0 , and T = 0 , at t = 0 .
/\

Solution Method

Numerical solution was obtained using the second order-accurate (in 

space and time) Crank-Nicholson (C-N) version of the finite difference method. 

Although the C-N method determines the solution at the new time t + , , it 

requires that the coefficients be evaluated at the time t , /2 > which is 

halfway between t , and the current time, t . Thus, the method is im­ 

plicit, and the following iterative scheme was employed (Van Rosenberg, 1976):

1) Using the known values of the coefficients at t , the time was 

incremented by At/2, (half the normal time step size), and the 

equations were solved for first estimates of u and a at

2) The results of Step 1 were used to evaluate the coefficients at

t +-j/o> anc* solutions were computed at the time t , .

3) By averaging the results at t , and t , new estimates were found



for u and a at t +1 /o> and these were used to recalculate 

the coefficients.

4) Using the coefficients from Step 3, the equations were again solved 

at the time t , , and Steps 3 and 4 were repeated until the re­ 

sults from two consecutive iterations converged to within an allow­ 

able error. Normally, it was found that convergence occurred after 

only one iteration (of Steps 3 and 4).

The C-N method is unconditionally stable for all choices of time step 
»

sizes and nodal s pacings. However, it is known to be oscillatory for the
2 homogeneous diffusion equation if the quantity cAt/Ay is large and pressure

gradients are steep; where c is the diffusivity, At the time step, and 

Ay the distance between nodes (Desai and Johnson, 1973). Because, as the 

weakened zone dilates, local flows could induce steepening pressure gradients, 

and the solution is very sensitive to perturbations in pressure near peak 

stress, the computer program was written so that the time step size was de­ 

creased as the stress approached peak.

Results

For the purposes of calculation, the shear stress vs. shear strain curve, 

at constant effective normal stress, was assumed to be the same as that used 

by Rice (1979) and by Rice and Rudnicki (1979): a parabola connected smoothly 

at the elastic limit T to a linear segment of slope G. This relation is

shown in Figure 2 and is described by

T = G , T < T

T = T P - IT (Y - V2   T * To
(14)

where Y is the strain at peak stress T and X is the difference between 
P P



Y and the strain at the elastic limit. The stress at the elastic limit 

is related to that at peak by

T0 = Tp -lGx (15)

The peak stress of the stronger sublayer (£.. < y <_ L) was assumed to have a 

value T 2 = 1-25 kb whereas that of the weaker sublayer (0 <_y £ £-,) was 

T 1 = 0.97 kb. For both layers, A = 2.5 x 1(T3 and G = 200 kb. Consequently, 

TQ, = 0.72 kb for the weaker sublayer and TQ? = 1-00 kb for the stronger 

sublayer. Other material parameters were assumed to be the same for both sub­ 

layers:

p = 0.6, 3 = 0.3, M = 534 kb, c = 0.1 m2/sec .

In all the calculations, the thickness of the initially weaker sublayer was 

one-tenth the thickness of the initially stronger sublayer.

Calculations were made for values of (UL/c) from 1.2 to 1.2 x 10" . 

The results are shown in Figures 3 to 5. Figure 3 shows the strain history 

of the first point in the layer to reach instability as a function of the 

average strain U/L for three values of UL/c. Also shown for comparison 

is the strain history for dry rock, where the curve is drawn for an infinites­ 

imal weakened sublayer thickness. The corresponding stress strain curves 

are shown in Figure 4. Figure 5 shows the distribution of the pore fluid

pressure decrease in the weaker sublayer immediately before instability, as
 

identified from Figure 3. Values of the nondimensional time Ut /!_ atmax

which instability occurred are listed in Table I. It is evident from Figure 

5 that the weakest point of the layer occurs at the interface between the 

sublayers where -p is lowest (lowest effective stress). This point was used 

to plot Figures 3 and 4.
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For the highest loading rate UL/c = 1.2, Figure 3 indicates that almost 

half of the weakened sublayer is at undrained conditions. As expected, the 

magnitude of the pore fluid pressure decrease diminishes as the interface 

between the sublayers is approached and drops rapidly in the stronger sublayer.
 

As UL/c decreases, diffusion becomes more effective in maintaining uniform 

pressure distributions of lower magnitude. Because the total fluid mass of

the layer is finite, the average fluid pressure must decrease as dilation occurs
  

Consequently, it is not possible ̂ to achieve perfectly drained conditions (p = 0)

even at very slow rates of deformation.

Table I tabulates some results from Figures 3 and 4. Shown is a compari­ 

son between the tangent modulus H. = H/(l + H/G) at instability for the

weakest point in the layer and the tangent modulus H. n for the underlyingtan
drained response at the current value of the effective stress. At the higher 

rates of deformation, instability occurred when the actual stress strain curve 

was at its peak (H^ = 0). However, at slower rates instability occurred when

H. was positive, but the underlying drained response was at its peak, tan
= 0- Recall that Rice's (1975) linearized perturbation analysis indicated

that perturbations would grow exponentially in time when the underlying drained 

response exceeds peak. However, the results here suggest that at higher defor­ 

mation rates, the material is driven to a load maximum instability before such 

perturbations can cause failure. At slower rates rapid growth of perturbations 

triggered by H. = 0 evidently cause instability at this point. Also shown

in Table I are the maximum average strain of the layer (U /L) and the maxi-max
mum shear stress attained.

Table II summarizes the influence of coupled deformation - diffusion 

effects on the strength of the material and on precursory deformation. The
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ratio U /U » where 11 is the surface dipslacement at which dry rock
UlQ/\ U U

reaches peak stress, indicates that diffusion effects increase the total aver­ 

age strain that can be achieved before instability. The third column indicates 

amount by which the maximum stress will exceed the peak stress in the weaker 

sublayer under drained conditions and the last two columns demonstrate the 

extent to which instability is delayed.

The precursor time calculations for the two slowest deformation rates 

involved a revised value for the dry rock time t^. As was discussed earlier, 

because the second layer of material was not an infinite source of fluid made 

it impossible for slow deformation rates to ever achieve drained conditions 

(a = constant = 0). This limitation of the model caused additional, artificial, 

dilatant hardening effects due to the mean pressure decreasing. Consequently, 

the pressure at the y = L was used as a measure of how much the effective 

stress had been artifically enhanced. Hence, instead of comparing the results 

for the two slowest deformation rates with dry rock, for which a =0, they
C

were compared with drained rock, but at an effective stress equal to the effec­ 

tive stress at y = L.

Concluding Discussion

The results presented here indicate that dilatant hardening can delay 

failure by comparison to its occurrence in dry rock. Moreover, although Rice's 

(1975) analysis demonstrated that homogeneous undrained response became un­ 

stable, in the sense that local nonuniformities grow exponentially in time 

when the underlying drained response passed peak, the results here suggest that 

at higher rates of deformation the material can be driven to a load maximum 

instability before significant growth of these nonuniformities occur. However,
 

for a representative tectonic strain rate r- = 10" /sec (corresponding to^
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0.1 bar/year using G = 200 kb), L = 5 km and c = 0.1 m2/sec,UL/c = 2.5xlO"6 , 

For this rate, the results here suggest essentially drained conditions prevail 

and instability is controlled by the drained response. Moreover, at such slow 

rates dilatant hardening appears to be ineffective at increasing either the max­ 

imum stress or average strain of the layer. Consequently, it is not antici­ 

pated that precursory effects due to widespread cracking or dilatancy would be 

observed.

Even for this simple geometry, direct numerical solution has proven to be

quite expensive. This is the result of having to choose small time steps in
  

order to resolve instability even for small values of UL/c. Consequently, we

are currently pursuing an approach which, although it still requires numerical 

solution, simplifies the diffusion aspects of the problem and, as a result, will 

be more economical. A brief description of this approach is given in our Semi- 

Annual Technical Report, and we intend to investigate this approach further 

during the next year.

Table I: Data for Layer at the Onset of Instability

1
1
1
1

1

UL/c

.2

.2xlO" ]

.2xlO"2

.2xlO"3

.2xlO"4

Htan/G at 

Failure

0

0

0.028

0.023

0.014

Hdtan/G at 

Failure

-0.074

-0.053

0

0

0

Umax/ L 

(10'3 )

5.133

5.127

5.089

5.036

5.017

Tmax

1.013

1.010

1.000

0.987

0.982
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Table II: Comparison between Dry Rock and Saturated 
Rock for Different Rates of Deformation

UL/c

1.2

1.2X10" 1

1.2xlO" 2

1.2xlO"3

1.2xlO"4

max p

1.034

1.033

1.025

1.009

1.001

T /Tdmax 7 p

1.044

1.042

1.031

1.012

1.002

(WtDP >
(L2/c)

1.4xlO~4

1.4xlO~3

1.02xlO~ 2
-2* 

3.69x10 L

4.89xlO"2

(t -td )/td 
^max V p

(«)

3.412

3.280

2.496

0.894*

0.112*

*Note: Compensation was made for additional dilatant hardening effects 

which were caused by the limitations of the model (see text).
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COUPLED DEFORMATION - PORE FLUID DIFFUSION EFFECTS

In addition to our work described in the previous section, which also 

involves coupled deformation diffusion effects, we have been exploring the 

use of singular solutions for fluid-infiltrated elastic solids to solve bound­ 

ary value problems. The goal of these studies is to obtain solutions analo­ 

gous to that of Rice, Rudnicki and Simons (1978) for spherical cavities or 

inclusions for other geometries, in particular, axisymmetric ellipsoids. This 

would make possible a study of the effects of geometry on the earthquake pre­ 

cursory processes examined by Rice and Rudnicki (1979) for the spherical 

inclusions.

The basis for this work is Rudnicki's (1981) rearrangement of deary's 

(1977) fundamental solution for linear fluid-infiltrated elastic solids. This 

rearrangement and the correction of a minor algebraic error by Cleary is 

described in Appendix II. The main result is that the response to sudden 

application of a point force can be written as the sum of the time-independent 

classical elasticity solution based on the undrained (short-time) elastic con­ 

stants and the solution to a continuous fluid mass dipole. More specifically,

the displacement u. and stress a., due to sudden application of a point' ' u
force P at the origin are given by (12) and (13) (Noting (32) - (36)) of

vX

Appendix II.

This rearrangement of the fundamental solution may be useful in solving 

certain boundary value problems. In order to investigate this possibility, 

we have attempted to reconstruct the solutions of Rice and Cleary (1976) and 

of Rice, Rudnicki, and Simons (1978) for loading of a spherical cavity by 

means of a singularity technique: appropriate singularities derived from the 

point force solution are placed at the center of the cavity and their strengths
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are chosen to satisfy the boundary conditions. This technique is analogous 

to that used by Timoshenko and Goodier (1970, art. 137) to solve the equiva­ 

lent elasticity problem of a spherical cavity loaded by remote tension (The 

solution by Rice et al. (1978) is analogous to the approach of Love (1944, 

article 173)). Although the procedure is straightforward, the detailed algebra 

is tedious. We will outline the solution for a spherical cavity loaded by rad­ 

ial tractions and pore fluid pressure at the cavity boundary. This problem 

has, of course, been solved elsewhere (see, for example, Rice and Cleary (1976)) 

but, nevertheless, it will suffice to illustrate the technique.

The singular solution needed to solve the elasticity problem of radial 

loading of a spherical cavity is the center of dilation. If the displacements

due to a point force P at x = x 1 are given by
ex ~ ~

u Jx) = P R g- (x - x 1 ) , (16)
a ~ p otp

the displacements due to a center of dilation are given by 

3g
ua (x) = -m T)f£(x - x.') . (17)

B 
where m is the strength of the singularity. Consequently, we begin with a

center of dilation in a linear fluid-infiltrated elastic solid. The stress 

a R and pore fluid pressure p due to a center-of-dilation of magnitude m

are

3x

Uy + 2JI) (x 

(\. - x)
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where

V*' ?) = 6ae C1 - (h i -5hp]-^[i -(h, -I 5hp]

and the notation otherwise is the same as that in Appendix II. A second, 

purely diffusive, singularity is also needed. By noting the correspondence 

between elastic singular solutions and pure diffusion singular solutions, the 

appropriate singularity is found to be an instantaneous source of fluid mass. 

The stress and pore fluid pressure fields due to instantaneous injection of 

an amount Q of fluid mass at the origin t = 0 are given by (20) and (21) 

of Appendix II. For our purpose here, it is more convenient to use this solu­ 

tion minus their long-time values. The results are

- X)
a 6 = -f-   3-       T (x, 0 (20) 
aB Po 2-nr c(X + 2y) aB

(X - X)(X ^
P = -^        ^ -^TSh,' < 21 >

C (A + 2u) Mo 4irr u

where, again, the notation follows Appendix II.

The solutions due to time-dependent source strengths m(t) and Q(t) 

can easily be constructed by superposition. The results are

/.} 3x x 0
( i \ u *'*\**y r*i* ^^ P T / o o \x, t; = TT \_ 0 \ > A * [.6 n ~   o~J \t-c-)^P ~ (X,, + 2y) 9 3 a3 2

- X) (22)- A; /.\

(Xu + 2y)

(X - X)(X 
P(x, t) = - -^    * & (23)
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and * denotes the convolution operation defined by

t
f(t) * g(t) = | f(t - t') g(t')dt' (24) 

o

The time-dependent strengths must be chosen to satisfy the following boundary 

conditions on the surface r = a:

p(r = a, t) = P^ (25a)

fa f& ( 25b ) 
a aa3 ao a

where P and a are constants. Substituting (22) and (23) into (25a) and 

(25b) yield

t 

"T (A +2 ) [ m ( t ') H(t " t')^'
^ J

(26)
  o

- A) ,
F(t) *" TA + 2y) ~u ira

(X - X)(X + 2u) T
(27)

where H(t) is the unit step function. These are simple integral equations 

of convolution type for m(t) and Q(t). Solution can be accomplished by 

using the Laplace transform

f(s) = L{f(t)> = e' st f(t)dt

o 

and noting the property

L{f*g} = f g . 

The transforms of the functions h-,(^) and ^h-j(^) are easily shown to be
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and

Thus, the transformed boundary conditions become 

a ^a3 s" 1 = y » m(s) s " ]
(j no. b VT , o V^0 (\ + 2y)

' 1V^ry F(s) e"--- s

2(x + 2^ } F(s)
u

^. /\

Solving for m(s) and F(s) yields

»- 2y)

= a --   OQ + ^ - 4,a (29)

Note that the inversion of F(s) will not converge (because of the exponential 

e ' c ). Nevertheless, taking the transforms of (22) and (23), substituting 

from (28) and (29) and inverting does yield the solution given by Rice and 

Cleary (1976).

This procedure has been used to reconstruct the solution of Rice et al . 

(1978) for shear loading of a spherical cavity, but the algebra is more com­ 

plicated. One difficulty in applying this technique to other geometries is 

that the appropriate position of the singularities is not known a priori. 

Nevertheless, for axisymmetric ellipsoids, it seems that a solution can be 

obtained by distributing the singularities along the center line.
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INTERACTION OF FAULT SLIP ZONES

A full description of our work in this area is given in Appendixes III 

and IV which reproduce published manuscripts. Appendix III (Rudnicki and 

Kanamori, 1981) describes the use of solutions for collinear shear cracks to 

examine quantitatively the effects of slip zone interactions on seismic 

moment, static stress drop and strain energy release. These calculations 

were purely quasistatic, but an effort to obtain similar results for dynamic 

conditions led to an investigation of the concept of radiated energy. This 

investigation is described in Appendix IV (Rudnicki and Freund, 1981). Various 

expressions, in terms of far-field quantities and fault surface tractions and 

particle velocities, are given for the radiated energy. In addition, the 

relationship of radiated energy to other energies involved in earthquake 

faulting is clarified.
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ABSTRACT

Predictions for processes preparatory to earth­ 
quakes based on an inclusion model of faulting are re­ 
viewed. The inclusion material is assumed to have 
properties representative of the response of brittle 
rock in compression; specifically, the inelastic re­ 
sponse is strain softening, inhibited by hydrostatic 
compression and exhibits volume increase (dilation) due 
to shear. Strain softening of the inclusion material 
leads to a dynamic runaway of inclusion shear strain 
which is interpreted as the occurrence of an earthquake. 
For both dry and fluid-saturated rock masses, the model 
predicts that runaway instability is preceded by a 
period during which the rate of inclusion strain accel­ 
erates relative to the far-field strain rate. However, 
in a fluid-infiltrated rock mass, the coupling of the 
deformation with pore fluid diffusion causes a much 
more pronounced period of accelerating inclusion strain 
and delays the onset of instability beyond its occur­ 
rence in a dry rock mass. This transient stabiliza­ 
tion arises from two mechanisms: the time dependent 
elastic response of the fluid-infiltrated material 
surrounding the inclusion and the dilatant hardening 
of the inelastic response of the inclusion material. 
The results for stabilization by dilatant hardening 
are shown to be consistent with recent laboratory ex­ 
periments. The analysis is based on generalizations 
of Eshelby's results for inclusions to nonlinearly de­ 
forming inclusions and to a spherical inclusion em­ 
bedded in a linear fluid-infiltrated elastic solid.

, k, k

NOMENCLATURE

dpy, dpe

"id

g 

G 

h 

K

Kf' Ks

K' 
s

major semiaxis of ellipsoidal cavity or 
inclusion

minor semiaxis of ellipsoidal cavity or 
inclusion

diffusivity

inelastic increments of shear and volume 
strain, respectively

deviatoric strain

function giving time-dependence of shear 
strain of spherical cavity wall (see 
Figure 5)

acceleration of gravity

shear modulus

hardening modulus

drained value of bulk modulus

bulk modulus of pore fluid and solid con­ 
stituents, respectively

an additional modulus of a porous elastic 
solid

effective values of bulk moduli due to 
dilatant hardening

ijki

Q, R

r
6 
6*

permeabilities

effective fault length in dislocation model 
of (7)

tensor of elastic moduli 

elastic modulus, K/(l + 3K/4G)

fluid mass content per unit volume of por­ 
ous solid

inward unit normal to cavity boundary

pore pressure

mass flow rate in x^^ direction per unit area

factors relating applied traction to strain 
at cavity wall (1)

nondimensional driving forces proportional 
to T

 a

array of shape factors used in Eshelby's 
inclusion solution

deviatoric tensor (S. 

time
kk 0)

diffusion time a /c for spherical inclu­ 
sion

apparent volume fraction of pore fluid

coordinate

relaxation constant

dilatancy factor

engineering shear strain

strain at peak stress and elastic limit, 
see Figure 2

values of inclusion shear strain at runaway 
under drained and undrained conditions, 
respectively

measure of far-field strain rate 

relative slip on frictional fault surface

relative slip necessary to reduce shear 
stress from T to T

P r
=1 if i * j, 6Kronecker delta, S 

if i * j

strain

volume strain, e,,

friction coefficient

effective, drained and undrained values of 
Poisson's ratios, respectively

Y - Y » half width of peak in inclusion

stress strain curve

shear stress

peak values of shear stress



AT

ij

» e.

difference between peak and residual values 
of friction stress

mass density of pore fluid

stress

mean normal stress (positive in compression),° - - v3
confining stress In axisytanetric compres­ 
sion test

confining stress minus pore fluid pressure 

time non-dimensionalized by diffusion time

shape factors for drained and undrained 
response

1 - K/K' 
s

Subscripts and superscripts

m denotes value in far field

inc denotes value In inclusion

prec denotes percursor time

rev denotes value in reservoir

INTRODUCTION

In recent years there has been much attention given 
to the possibility that earthquakes can be predicted. 
To determine whether prediction is possible and, if pos­ 
sible, to make predictions on a rational basis, an im­ 
proved understanding of processes preceding earthquakes 
is needed. This paper reviews recent results based on 
an inclusion model of earth faulting which is mechani­ 
cally consistent and incorporates material behavior rep­ 
resentative of fissured rock. This model predicts that 
dynamic instability, which is interpreted as the occur­ 
rence of an earthquake, is preceded by a period of 
accelerating strain. Moreover, the coupling of defor­ 
mation with the diffusion of an infiltrating pore fluid 
can delay the onset of dynamic instability, set the time 
scale of the failure process, and cause a more pro­ 
nounced precursory period of accelerating strain. The 
time scale and character of this accelerating deforma­ 
tion are such that observable precursors, for example, 
accelerated strain or tilt of the ground surface, 
changes in local pore fluid pressure, and in physical 
properties such as electrical resistivity, radon con­ 
tent of wells, or seismic wave speed ratios, are pos­ 
sible. Some discussion of these results has also been 
included In recent reviews of the theory of precursory 
processes in earthquake rupture (1) and the mechanics 
of earthquake rupture (2).

The inclusion model of earth faulting (3) consid­ 
ers a zone (the inclusion) having mechanical properties 
which are uniform but different from those of the sur­ 
rounding material. Specifically, the inclusion is 
assumed to undergo inelastic deformation representative 
of brittle rock in compression whereas the surrounding 
material is regarded as nominally linear elastic. In 
compression, the stress-strain curve of brittle rock 
typically exhibits a peak, i.e., brittle rock is strain 
softening, and inelastic shearing is inhibited by hydro­ 
static compression and accompanied by inelastic volume 
increase (dilation). The inclusion may Idealize either 
a weakened zone of material (3) which, because of past 
faulting, has a lower threshold to inelastic behavior 
or a "seismic gap" (JL) which is driven Into the regime 
of inelastic behavior because it lags behind the sur­ 
rounding material in its adjustment to the imposed far 
field deformation. In either case, continued loading 
of the rock mass drives the inclusion material into the

strain softening regime. If the slope of the descend­ 
ing stress strain curve becomes sufficiently negative, 
further quasistatic deformation is not possible and a 
dynamic runaway of inclusion shear strain occurs. This 
instability is analogous to that which occurs in a com­ 
pliant testing machine if the load carrying capacity of 
the sample decreases more rapidly than the machine can 
unload.

Rice (1.) has pointed out that a general feature of 
this class of models (and of frictional models based on 
sliding on a discrete surface in which the friction 
stress decreases with sliding distance; see, for example, 
(£.» A» A» 2) and tne article by Stuart in this volume.) 
is the increase, prior to instability, of the ratio of 
inclusion strain Increment to far-field strain incre­ 
ment. Although this increase may give rise to observ­ 
able precursors, Rice et al. (8) and Rice and Rudnicki 
(9) (hereafter, this reference will be abbreviated as 
RR) have shown that if the rock mass Is fluid-infil­ 
trated, the coupling of deformation to the diffusion of 
pore fluid can stabilize the rock mass and give rise to 
a more pronounced period of accelerated deformation. 
This stabilization is, however, transient and ultimately 
culminates in instability, although its onset Is delayed 
beyond the occurrence in the absence of pore fluid.

The stabilization by pore fluid effects results from 
the fact that both the inelastic response of the inclu­ 
sion and the elastic response of the surrounding material 
are stiffer for rapid load alterations. More precisely, 
"rapid" means too rapid to allow time for fluid mass 
diffusion from material elements and such conditions 
are said to be undrained. Alternatively, drained con­ 
ditions occur when load alterations are slow enough 
that changes in pore fluid pressure are alleviated by 
fluid mass diffusion. It is well known from analyses 
of consolidation In soil mechanics (e.g., (10), (11)) 
that the stiffness of a fluid-infiltrated, but otherwise 
elastic, material is greater for undrained conditions 
than for drained conditions. The effects of this time- 
dependent elastic response on faulting have been dis­ 
cussed by Rice and Cleary (12), Booker (13) , Rice and 
Simons (14), Rice et al. (8), and RR (£) (Also, see the 
article by Rice in this volume), and Ruina (15) has dis­ 
cussed the retardation of hydraulic fracture by this 
effect. The source of the Increased stiffness of in­ 
elastic response is the tendency of brittle rock to 
dilate or increase Its pore space when sheared inelasti- 
cally. For undrained conditions, this dilation tends to 
cause a decrease in the local pore fluid pressure and, 
consequently, an increase in the effective compressive 
stress, that is, the total stress minus the pore fluid 
pressure. Because the inelasticity of brittle rock 
arises from microscale processes which are frictional 
in nature, this increase In effective compressive stress 
inhibits further inelastic deformation. This phenome­ 
non is called dilatant hardening and was first discussed 
for granular media by Reynolds (16). Frank (17) was the 
first to discuss its relevance of this effect to fault­ 
ing and Brace and Martin (18) and Martin (19) have 
observed dilatant hardening in laboratory deformation 
of rock. Further analyses of dilatant hardening have 
been given by Rice (20, !1) , Rudnicki (21). and RR.

The analysis of the inclusion model of faulting is 
based on generalizations of Eshelby's (22, 23) results 
for ellipsoidal Inclusions In linear elastic solids. In 
the absence of coupling of the deformation with pore 
fluid diffusion, the generalization is the modest one 
of recognizing that Eshelby's results can be used to 
relate the stress and strain in the inclusion to the 
stress and strain applied in the far-field regardless 
of whether the inclusion is elastic or inelastic so 
long as it is homogeneous. For the coupled deformation 
diffusion problem, the generalization is a more substan­ 
tial one and to date has been, accomplished only for



spherical inclusions by Rice, Rudnicki and Simons (_§). 
Their derivation is based on the solution for a spheri­ 
cal cavity in a fluid infiltrated solid loaded by trac­ 
tions at the cavity boundary.

Of course, the inclusion model of faulting will 
not be appropriate for all circumstances. Because of 
kinematic constraints or continued faulting in the same 
region, inelastic deformation associated with faulting 
may be confined to a narrow zone or fault surface. In 
this case, a model of faulting as a spreading crack-like 
zone of slip may be more appropriate (e.g., (14), (1), 
Rice, this volume). Nevertheless, even though faulting 
is often idealized as slip on a distinct surface or in­ 
tense shear of a narrow zone, this may be the result of 
localization of inelastic deformation in a much larger 
volume. Indeed observations of changes of physical 
properties prior to earthquakes at relatively large dis­ 
tances from the fault suggest such an extent of inelas­ 
tic deformation.

The review first considers the inclusion model and 
the application of Eshelby's results to the analysis of 
runaway instability. Then the effects of fluid-infil­ 
tration are reviewed and the recent experimental obser­ 
vations of Martin (19) are discussed in terms of the 
analysis of RR«

INCLUSION MODEL AND RUNAWAY INSTABILITY

First the case in which the rock mass is dry or 
deforms under drained conditions is considered. As al­ 
ready mentioned, under drained conditions the deforma­ 
tion occurs so slowly that alterations of pore fluid 
pressure are alleviated by diffusive mass flux. Of 
course, if the rock mass is fluid-infiltrated, such 
conditions will not apply near instability.

The analysis of runaway instability is based on 
recognizing that Eshelby's (22) results, although orig­ 
inally obtained for elastic inclusions, can be used to 
relate the stress and strain in an inelastic inclusion 
to the stress and strain applied in the far field. This 
result can be obtained by first considering a cavity in 
an infinite linear elastic solid having moduli L.,,.. 
The solid is loaded at the cavity boundary by uniform 
tractions n^ a^* where n.^ are the components of the 
unit normal directed inward from the cavity boundary. 
Eshelby (22) demonstrated that if the cavity is ellip­ 
soidal, the cavity boundary deforms as if the interior 
had undergone a uniform strain e.. which is given by

following expression (21)

ij

Qijk£
(1)

where the Q-HVJ, depend on the elastic constants and 
the geometry of the cavity.

Eshelby (22) actually obtained this result by 
a different route. He first considered an ellipsoi­ 
dal region ("the inclusion") of a linear elastic solid 
to undergo a change of size and shape which, in the 
absence of constraint by the surrounding matrix, would 
be given by the homogeneous stress-free transformation 
strain eT.. He then showed that the strain which re­ 
sults in the inclusion due to the presence of the con­ 
straint by the matrix is also homogeneous and is 
related to ej by

where the S^., . are factors which depend on the shape 
of the ellipsoid and on ratios of the elastic constants 
of the matrix. Because the resulting strain of the in­ 
clusion is homogeneous, Eshelby (22) was also able to 
solve problems for inclusions having elastic constants 
different from those of the matrix and, hence, for cavi­ 
ties. The Q.^,. n are related to the S_..,,_  by the

, 4 ijpq
5 . 6 . - S pk qx.

General expressions forwhere S .£ S^^^j = 6 . 6~* . uenerax expressions re 
S ijk£ have teen givenP5y Eshelby (22, 23) and these 
have been recorded by Rudnicki (3) . Rudnicki (_3) has
also recorded the expressions for the S ijkl in the
special case of axisymmetric ellipsoids and has tabu­ 
lated their values for various aspect ratios.

The solution for an ellipsoidal inclusion of homo­ 
geneous material which is embedded in an infinite lin­ 
ear elastic body subjected to uniform stress or strain 
at infinity can be constructed by using (1) and super­ 
position. In particular, the field outside the inclu­ 
sion is identical to that which results from the sum of 
the following: (i) uniform stress ov, and the strain 
associated with a^j by

(2)

and (ii) fields which result from loading the cavity 
boundary by the following tractions

(3)

The displacements of the cavity boundary which result 
from (ii) must be consistent with uniform strain of the 
interior given by

inc (A)

Because these strains must be related to the loading 
(3) by (1), the result is the following "Eshelby rela­ 
tion"

inc (5)

where and., 
strain ana stress o

.TIC.. can now be identified as the
f the inclusion material. Note that

(5) has been constructed without reference to the con­ 
stitutive law of the inclusion material and requires 
only that the inclusion material be homogeneous, the 
inclusion shape be ellipsoidal, and the surrounding ma­ 
trix be linearly elastic.

Runaway instability is best illustrated by consid­ 
ering the special case of pure shear and using a graphi­ 
cal construction due to Rice (1^, 8) . The component of 
(5) for pure shear is

'inc (6)

where Y is the engineering shear strain, G is the 
shear modulus of the surrounding material (assumed, for 
convenience, to be isotropic) and £ is a shape factor 
which depends on Poisson's ratio and the geometry of the 
inclusion.

The value of £ for a spherical inclusion is (22)

2(4 - 5v)/(7 - 5v), (7a)

where v is Poisson's ratio for the matrix material. 
For flat axisymmetric and cylindrical inclusions of 
aspect ratio a/b » 1, the values of £ are

(a/b) [4(1 - v)/Tt(2 - v)] (7b)

and



respectively ((3) with correction noted in (1))   For
v = 0.2, £ = 1«0 for the spherical inclusion and
S = 10 for the axisymmetric inclusion with a/b - 18.

Equation (6) is plotted in Figure 1 as the Eshelby 
line of slope - G/£. Also shown is the (linear elas­ 
tic) constitutive law for the surrounding material 
TCO - G YCO an(l a relation for the inclusion shear stress 
Tinc as a function of the inclusion shear strain YAnc « 
The latter is drawn to be representative of the behav­ 
ior of brittle rock in compression. For a given value 
of TW , corresponding to point A in Figure 1, the 
corresponding values of t±nc and Yinc are given by 
the intersection (A*) of the Eshelby line through point 
A with the inclusion stress-strain curve. As T^ is 
increased, the Eshelby line moves outward parallel to 
itself until it is tangent to the inclusion stress 
strain curve at B*. At this point, any further in­ 
crease in TOO cannot be accommodated by quasistatic 
deformation and a dynamic runaway of inclusion shear 
strain occurs. Hence, the condition for runaway insta­ 
bility is the following:

(7c) postpeak variation of Yinc (divided by its value at 
instability, Yinc - Yp + A/£) is plotted against the

^ . inc inc
(8)

Equation (6) can be expressed in differential form as
.-1

(1 [1 + (5/G) d-inc /dYlnc ] * (8a)

and, in this form, it is clear that the condition (8) 
corresponds to the ratio df, c/dY» becoming unbounded. 
Furthermore, if dt^nc/dYinc decreases continuously, 
the approach to instability will be marked by a con­ 
tinuous increase in the ratio on the left hand side of 
(8a).

00

TOO "Hnc

Instability

r vs-

Eshelby Line

Figure 1. Graphical illustration of runaway insta­ 
bility. (After Rice (1)).

As a specific example, consider the following 
relation for T.. versus Yinc which was used by 
RR in their numerical calculations:

inc

"inc

j < Y 'inc   'o

- G(Y, - Y ) /2X, Y* > Y p inc 'p ' 'inc   o

(9)

where YO is the strain at the elastic limit, and 
 * Yp = Y0

2). Using (9) and t
is the strain at peak stress Tp (Figure 

G YOO in (6) yields an expres­

following measure of far field strain:

1.0 

0.8 

06 

0.4 

O2

O -

o
0

Figure 2.

0.2 0.4 0.6 0.8 1.0

Postpeak variation of inclusion strain as a 
function of far field strain (as measured by 
T) for inclusion stress strain curve used by 
RR (see (9)) and shown as inset.

sion for Y . inc as a function of Y Figure 2 the

Clearly, the ratio dYinc/dYo> increases as instability 
is approached and as noted by Rice (1), this feature is 
a general precursory effect for strain softening models. 
Of course, in the earth's crust Y» changes extremely 
slowly (In California, measured strain rates are typi­ 
cally less than 1 y strain per year (24, 25)) and hence 
the acceleration of inclusion strain may not be detect­ 
able until very near instability.

In the model of (3) the inclusion was regarded as 
weaker than the surrounding material (Tj_nc < T^) and 
Figure 1 has been drawn to be compatible with this 
interpretation. However, Rice (JL) has shown that sim­ 
ilar constructions can be applied to a seismic gap, 
that is, an inclusion zone which has lagged behind the 
surrounding material in adjusting to the far field 
deformation, and to sliding on frictional surfaces for 
which the friction stress is a function of the amount 
of relative sliding (also see (£)) 

Because brittle rock tends to dilate when sheared 
inelastically, and because dilation of the inclusion 
material must occur against the constraint of the sur­ 
rounding matrix, the response in shear is in general 
coupled to that for hydrostatic compression. Conse­ 
quently, the T. versus Yinc curve which is illus­ 
trated schematically in Figure 1 should be regarded as 
that appropriate for in situ behavior. Rudnicki (JJ) , 
in his treatment of runaway instability for arbitrary 
ellipsoidal inclusions and general loading conditions, 
has also given a full analysis of the effects of this 
coupling between shear and hydrostatic compression. 
Rudnicki (3) used a version of the constitutive law 
proposed by Rudnicki and Rice (26) to model the behav­ 
ior of brittle rock and the next section reviews this 
law for the simple deformation state which is a combi­ 
nation of pure shear and hydrostatic compression. This 
constitutive law will then be used to illustrate the 
inhibiting effects of pressure sensitive and dilatant 
behavior on runaway instability for a spherical inclu­ 
sion.

Constitutive Law for Inclusion Material
The constitutive relation discussed here is a vari­ 

ation of that developed by Rice (20) for an analysis of 
the stability of dilatant hardening and generalized by 
Rudnicki and Rice (26) to multiaxial loading and arbi­ 
trary deformation magnitudes. Consider a small element



of the inclusion material which is subjected to & com­ 
bination of hydrostatic stress a (in compression) and 
shear stress T. If the next increment of deformation 
tends to cause elastic unloading, the strain increments 
which are work conjugate to o and T are given by

dt/G, de - do/K (10)

where C and K are the elastic shear and bulk moduli, 
respectively. If instead the next increment of defor­ 
mation tends to cause continued inelastic deformation, 
the inelastic increments of strain must be added to 
those of (10). For constant hydrostatic stress (da » 0), 
the inelastic increment of shear strain is

dPY dt/h CH)

where the modulus h may be positive (hardening) or 
negative (softening) and is related to the slope of the 
T versus Y curve by

dt/dy = h/(l + h/G) for do (12)

Because the inelasticity of brittle rock is primarily 
due to microscale processes which are frictional in 
nature (e.g., frictional sliding on fissure surfaces 
and microcracking from the tips of pre-existing fis­ 
sures) , inelasticity is inhibited by an increase in 
hydrostatic compression. Consequently, for increments 
in which da # 0, dr is replaced in (11) by dt - yda 
where y is a coefficient of friction which expresses 
the elevation of the flow stress due to hydrostatic 
compression. Uplift in sliding over asperities and 
tensile cracking from the tips of existing fissures 
give rise to macroscopic inelastic volume increase (di- 
latancy) accompanying inelastic shear strain. Hence, 
the ratio between inelastic increments of volume strain 
and shear strain is presumed to be fixed by the current 
stress state:

dp e (13)

where f? is the dilatancy factor. In terms of a "yield 
surface" in T versus o space, y is the local slope 
of the yield surface and tan~l (8 - y) is the angle 
between the inelastic strain increment plotted as a vec­ 
tor (-d?e, dPy) and the normal to the yield surface. 
Rice (20), Rudnicki and Rice (26), and Rudnicki (3) have 
estimated values of y in the range 0.5 to 1.0 and 
3 in the range 0.2 to 0.5 from experimental results. 
In general, all the parameters of the constitutive law 
may change with deformation but the variation in h is 
typically most rapid, deary and Rudnicki (27) have 
given an expression for the tangent modulus in axisyra- 
metric compression in terms of h, y, $ and elastic 
moduli.

The constitutive law, now written in rate form, 
for continued inelastic deformation is

r inc = T. /G 4- (T, me Inc

einc - - ainc/K+ ' (Tinc-'ialnc)/h

(14)

(15)

where the designation "inc" has been included explicit­ 
ly. Deformation which tends to make T .i nc
corresponds to continued inelastic deformation whereas 
that which tends to make 
elastic unloading.

T, < yo. corresponds to

Runaway Instability for a Spherical Inclusion
For a spherical inclusion, the Eshelby relations 

(5) for deviatoric and hydrostatic components decouple.

These equations reduce to the following simple expres­ 
sions

e., - e C3/4G) [a, - a ] inc « l inc «J

inc

(16)

(17)

where £ = 2(4 - 5v)/(7 - 5v), o- - o../3, e * e 
and it has been assumed following Rudnicki O) that (5) 
can be used to relate rates of stress and strain. Using 
(15) and (16) to eliminate a from (17) yields

'inc (18)

where M « K/(l + 3K/4G) and, for convenience, it has 
been assumed that £«= 0. This equation makes clear 
the inhibiting effect that the constraint of the sur­ 
rounding material has on inelastic deformation of the 
inclusion: Comparison with (11) reveals that the har­ 
dening modulus is elevated from h to an effective 
value h + yBM. The condition for runaway instability 
is easily obtained from (8):

- y3K/(l + 3K/4G). (19)

It is evident from (19) that for a spherical inclusion 
runaway instability is predicted to occur well after 
peak stress, that is, when the hardening modulus is 
less than zero and comparable in magnitude to the elas­ 
tic shear modulus. Although, as mentioned earlier, 
runaway is predicted to occur closer to peak stress for 
narrow inclusions, this calculation and the more gen­ 
eral analysis of (^3) indicate the importance of strain- 
softening behavior in giving rise to instability. It 
has sometimes been suggested, primarily on the basis of 
a comparison by Walsh (28) of the effective stiffness 
of a loading apparatus with that of the material sur­ 
rounding a fault, that such postpeak deformation would 
not be realized in situ. However, the calculation by 
Walsh (28) of the effective stiffness of a fault as­ 
sumed slip on a crack-like surface and elastic proper­ 
ties of the fault zone. Although the analysis of (3) 
agrees with that of (28) in the limiting case of an 
inf initesiiaally thin inclusion of nondilatant proper­ 
ties, it is clear that more generally dilatancy, 
pressure-sensitivity of inelastic behavior, and a 
finite thickness of the inclusion contribute to the 
requirement that runaway instability occur after peak 
stress.

Equation (19) assumes that the elastic moduli of 
the inclusion are equal to those of the surrounding 
material. However, the microcracking which gives rise 
to inelastic deformation of brittle rock also causes a 
degradation of the elastic moduli to 50 to 90% of 
their initial values (3) . If the elastic moduli of the 
inclusion are G* and K*, then Rudnicki (21) has 
shown that the value of h at runaway instability is

h = - G*/(l - ySK*/(l + 3K*/4G) . (19a)

For G* « G and K* « K, the expression in the de­ 
nominator of each term reduces to unity. Rudnicki (21) 
also considered the limiting case of an extremely ani- 
sotropic spherical inclusion which could deform only by 
shear and compression or extension relative to a single 
direction. In this case runaway instability was pre­ 
dicted always to occur after that for the isotropic 
inclusion.

Rudnicki (3) also used the analysis of (26) to 
consider the possibility that deformation in the inclu­ 
sion would cease to be homogeneous and further deforma­ 
tion would be concentrated in a narrow zone. Rudnicki 
(3) concluded that conditions for localization of



deformation would, in general, be met prior to those 
for runaway instability although for very narrow zones 
both conditions may be satisfied nearly simultaneously. 
This conclusion was based primarily on the observation 
that for nearly spherical inclusions the mode of de­ 
formation in the inclusion, for example, plane strain 
versus axisymmetric compression, would be nearly the 
same as that imposed in the far field whereas for very 
narrow inclusions the mode of deformation is constrained 
to be essentially a combination of pure shear and uni- 
axial compression. A more detailed analysis of condi­ 
tions for localization of deformation in general ellip­ 
soidal inclusions would be useful. Because conditions 
for localization of deformation are typically met prior 
to runaway instability, the constitutive law of the 
inclusion material should be regarded as reflecting the 
overall response of the inclusion rather than that of 
any specific homogeneous material.

EFFECTS OF COUPLED DEFORMATION AND DIFFUSION

If near surface crustal rock is infiltrated with 
ground water, predictions of runaway instability based 
on drained conditions will be altered by coupling be­ 
tween deformation and pore fluid diffusion. More 
specifically runaway instability may be stabilized by 
the two mechanisms which were mentioned earlier: time 
dependent stiffness of the material surrounding the 
inclusion and dilatant hardening. The stabilizing ef­ 
fects of these mechanisms can be illustrated in terms 
of the graphical construction in Figure 1 (1).

continued softening of the inclusion material has caused 
the stress strain curve to become tangent to the 
Eshelby line for undrained response. During this per­ 
iod the inclusion strain increases from Y, to Y»-

Undrained Eshelby 
Line

Drained Eshelby 
Line

Figure 3. Graphical illustration of stabilization by 
time dependent stiffness of material sur­ 
rounding the inclusion. Instability is 
delayed from B* to D*. Stiffness changes 
are greatly exaggerated for illustration.

Figure 3 illustrates stabilization by the time 
dependent stiffness effect. The Eshelby line for 
drained response is shown as the dashed line of slope 
- G/£ which is tangent to the inclusion stress strain 
curve at B'. However, the rapid acceleration of in­ 
clusion strain which occurs as B* is approached (as 
illustrated in Figure 2) will elicit undrained response. 
Because the surrounding material is elastically stiffer 
for undrained response, the corresponding Eshelby line 
is steeper and is not tangent to the inclusion stress 
strain curve at B'. Consequently, instability will not 
occur at B'. but instead, is delayed to D' where

>^Dilatnntly Hardened 
/ Response

Eshelby Line

Figure 4. Graphical illustration of stabilization by 
dilatant hardening of inclusion material. 
Instability is delayed from B' to D'. 
Magnitude of the dilatant hardening effect 
is greatly exaggerated for illustration.

Figure 4 illustrates stabilization by dilatant 
hardening. Here the slope of the Eshelby line is re­ 
garded as constant corresponding to neglecting the time 
dependent stiffness of the surrounding material. As 
the inclusion strain approaches YB », the instability 
point predicted by the drained analysis, rapid deforma­ 
tion induces undrained response of the inclusion mate­ 
rial. Consequently, the inclusion material does not 
follow the stress strain curve for drained response 
(dashed curve) but rather that for undrained response; 
instability is delayed from B' to D' where the tan­ 
gent to the dilatantly hardened response curve has 
fallen to the slope of the Eshelby line.

Although both Figure 3 and Figure 4 indicate an 
increase in TO, during the delay from point B 1 to 
point D' (The stiffness changes and increases of tm 
are greatly exaggerated for illustration), the deforma­ 
tion is self-driving once the inclusion strain has ex­ 
ceeded Ygt; that is, after this point, the inclusion 
strain will accelerate to instability at D' even if 
TW is held constant U, 21). The time which elapses 
during this period is defined as the precursor time. 
There is, of course, some arbitrariness in this defini­ 
tion but it is unambiguous in the context of this model 
and the definition is motivated by the fact that during 
this period the deformation will be much more rapid than 
the tectonic strain rate. Consequently, the detection 
of precursory phenomena may be possible during this 
period.

To predict the precursor time and to analyze quan­ 
titatively the increase of inclusion strain toward in­ 
stability, it is necessary to obtain Eshelby relations 
analogous to (5) for a linear porous elastic fluid- 
infiltrated ("Biot") solid. The governing equations 
for such a solid were first established by Biot (11) 
and these are reviewed in the next section. The Eshelby 
relations can, in principle, be obtained by the same 
steps outlined in the derivation of (5): First, the 
problem of an ellipsoidal cavity loaded at its boundary 
is solved; if the resulting (now time-dependent) defor­ 
mation of the cavity wall is compatible with homogeneous 
strain of the interior, then the solution for the in­ 
clusion can be obtained by superposition. Thus far, 
however, only the solution for a spherical cavity has 
been obtained (8). This solution, its use in obtaining



Eshelby relations, and the application of these rela­ 
tions to the analysis of transient stabilization of 
runaway instability (9^ will be reviewed in the follow­ 
ing subsections.

Governing Equations for a Biot Solid
Although the governing equations for a linear por­ 

ous elastic fluid-infiltrated solid were first derived 
by Biot (1_1), Rice and Cleary (12) have given a more 
elucidating rearrangement of these equations. Rice and 
Cleary (12) demonstrated that in the limits of drained 
and undrained response, the total stress a., is re­ 
lated to the strain of the solid matrix EI-J by the 
usual relation of linear elasticity; that is

where 6^. is the Kronecker delta, G is the shear 
modulus, and v is an effective value of Poisson's 
ratio. This Poisson's ratio has the value v for 
drained response and v for undrained response where 
v £ \>u £ 1/2. The upper limit is attained for separ­ 
ately incompressible constituents and the lower for 
highly compressible pore fluid. Thus, the source of 
the elastically stiffer response for undrained condi­ 
tions, and hence the stabilizing effect, is an increase 
in the effective value of Poisson's ratio.

More generally, the stress a^. and the change in 
fluid mass content per unit volume m are related 
linearly to the strain e^. and the alteration in pore 
fluid pressure p. The pore fluid pressure is defined 
precisely as the value of the pressure in a reservoir 
of homogeneous pore fluid which, when connected to a 
small element of porous material, would equilibrate 
any fluid mass flux from the element. Such an element, 
although it may contain several interconnected pores 
or fissures, would be regarded in this continuum for­ 
mulation as a "point". Very rapid load alterations, 
for example, on the time scale of wave propagation, 
would cause the pressures in these pores or fissures, 
to be different and, under these circumstances, the 
characterization of the pore fluid by a single pres­ 
sure would be inadequate. Cleary (29) and O'Connell 
and Budiansky (30) have discussed the response in this 
dynamic regime. Hence, the undrained response which 
is regarded as instantaneous in the Biot formulation 
assumes there is sufficient time for pressure equili­ 
bration among cavities occupying a single "point".

The complete set of constitutive equations is the 
following:

° = 2G [e + ve (1
m - m = ? p [e + 5 p(l- 2v)(l- 2v )/2G(\> - v)] (22)'kk

q = - p K 3p/9x

u u

(23)

where mQ is the value of m in the unloaded state, p 
is the mass density of the pore fluid, and (23) is 
Darcy's law which relates q., the mass flow rate in 
the x^ direction per unit area, to the gradient of 
pore fluid pressure; K is a permeability which is 
often expressed as K » k/p where p is the fluid 
viscosity and k has the dimensions of length squared 
(usually measured in millidarcies; 1 md = 10~H cm2 ) 
or as K » k/o g where g is the acceleration due to 
gravity and k has dimensions of velocity; £ = 1-K/K' 
where K(= 2G(1 + v)/3(l - 2v)) is the bulk modulus S 
of the porous matrix material and K' is an empirical 
constant which, under conditions stated by Rice and 
Cleary (12) (also see (31.)), is identical to the bulk 
modulus of the solid constituents.

For drained conditions, any alterations in pore 
fluid pressure are dissipated, p = 0, and (21) re­ 
duces to (20) with ve = v. For undrained conditions, 
there is insufficient time for fluid mass diffusion 
from material elements, m = m , and the change in pore 
fluid pressure is obtained by equating the right hand 
side of (22) to zero. Substituting the resulting value 
for p into (21) again reduces this equation to (20) 
with \> e = \>u .

These constitutive equations must be combined with 
the strain displacement relation

9u./3xi )/2,

and field equations expressing equilibrium 

SCK,/9xi = 0

and conservation of fluid mass 

V   q + 9m/3t = 0

(24)

(25)

(26)

Substituting Darcy's law (23) in this last equation 
(26) and rearranging by using (25), (21), and (22) 
yields a homogeneous diffusion equation for the fluid 
mass content m (12)

where V(...) = 3(...)/3xk 
can be expressed as (12)

(27) 

. The diffusivity c

-v)
(28)

where the first term in square brackets is the modulus 
governing one dimensional straining and is usually 
called the consolidation coefficient in soil mechanics.

Note that the diffusivity c rather than the per­ 
meability K is the material parameter which sets the 
time scale of diffusion. Although these quantities 
are proportional, the diffusivities corresponding to 
the same value of permeability may be quite different. 
For example. Rice and Simons (14) give a diffusivity 
of 10~2 cm /sec as representative of the elastic be­ 
havior of clay corresponding to a permeability k~ = 10"' 
cm/s (or k = 0.1 md); however, for a Ruhr sandstone 
with a permeability twice that of the clay, Rice and 
Cleary (12) give a diffusivity of 53 cm2/s which is 
more than three orders of magnitude larger than that of 
the clay.

Values of c determined from laboratory measure­ 
ments (see (12) for a summary) are typically at least 
one to two orders of magnitude smaller than values esti­ 
mated from field observations. Obviously, large joints 
and fissures which can contribute substantially to fluid 
transport in the field are not present in laboratory 
size samples. Based on a variety of fluid observations, 
Anderson and Whitcomb (32) suggested a field diffusivity 
of 1 m2 /s and Rice (1) has estimated c = 0.1 m2/s 
from measurements by Kovach et al. (33) of water level 
changes in wells. A recent literature survey by Li (see 
(34)) has indicated that these values are consistent 
with published evidence on field diffusivities near 
fault zones.

Rice and Cleary (12) have tabulated values of v 
and v (fas well as other parameters) inferred from 
laboratory tests on rock. However, the presence of 
large joints and fissures also affects the values of v
tending to reduce and increase (it I2., 30, 35)

45



Unfortunately, there appears to be no direct source of 
field values for these parameters. Neither corresponds 
to values inferred from seismic wave speed ratios. Rice 
and Rudnicki (£) have given some estimates by using the 
self-consistent calculations of O'Connell and Budiansky 
(35) and a value of crack density parameter suggested by 
them on the basis of a comparison of their calculations 
with observations of wave speed ratios prior to the San 
Fernando earthquake.

Eshelby Relations for a Fluid-Infiltrated Solid
The Eshelby relations for a spherical inclusion in 

a fluid-infiltrated solid can be constructed by first 
solving the equations of the last section for sudden 
application of traction and pore fluid pressure at the 
wall of a spherical cavity. The solution for sudden 
application of pore pressure po and purely radial 
total stress aQ has been given by Rice and Cleary 
(12). As discussed in (8), the displacement of the 
cavity wall is independent of po and is compatible 
with a uniform volume strain of the cavity interior. 
This strain is related to the applied stress by

(3/4G) o (29)

Comparison with (16) reveals that this agrees exactly 
with the result for a linear elastic solid. The fluid 
mass flow out of the cavity can be calculated from the 
pressure distribution outside the cavity and Darcy's 
law:

q(r = a,t) = - p K8p/3r a/(*ct) 1/2 ]p (30)

where q is the radial mass flux and a is the rad­ 
ius of the cavity. Rice et al. (8) show that fluid 
mass conservation on the surface of the cavity leads 
to the following expression:

m(t) - (3p K/a) a/0rct) 1/2 ] (31)

where m(t) is now interpreted as the rate at which 
fluid mass of the cavity increases.

The boundary conditions for sudden application of 
shear traction to the cavity wall are given by Rice 
et al. (8) as

S S

,1/2
a, t > 0. (32)

where 
tr S =

I* is an arbitrary deviatoric tensor, i.e., 
 j. = 0, and x./a is the component of the out­ 

ward unit normal to the cavity surface. Rice et al. (8) 
constructed the solution by recognizing that material 
isotropy, spherical symmetry and linearity require the 
displacement to have the form

u = x (x-S.x) F1 (r,t) + x.§ F2 (r,t) (33)

where x-S-x . (x^ ... 
are functions to be determined.

and F^(r,t)
For the same

reasons, the alteration in fluid mass content must have 
the form

(x-S-x) g(r,t) (34)

unknown functions F,, F2 , and g can be determined 
by solving the equations which result from substituting 
(33) and (34) into the governing equations.

Rice et al. (8) demonstrate that the cavity bound­ 
ary deforms as if the interior had undergone a uniform 
deviatoric strain given by

2G e at r « a (35)

where ? = 2(4 - 5v)/(7 - 5v), £u = 2(4 - 5vu)/(7-5vu) 
and the function f(ct/a2) has the limiting values 
f(0) «0 and f(~) - 1. Hence, the longtime and in­ 
stantaneous responses are given by the classical elas­ 
ticity solution with Poisson's ratio equal to its 
drained and undrained value, respectively. The form of 
(35) is independent of the boundary condition on the 
fluid mass at the cavity wall although the specific 
time-dependence of f(ct/a2 ) does depend on this bound­ 
ary condition. The equation governing the time depend­ 
ence of the cavity strain is obtained by substituting 
(34) into the diffusion equation (27)

3 g 4." 1 is. 
c at (36)

and this must be solved subject to the initial condition 
g(r,t=0) " 0 (because undrained conditions apply at 
t - 0) and to the boundary condition derived from the 
second of equations (32). The function f(ct/a2) is 
related to g(a,t) through the boundary condition on 
the traction. For p = 0 at the cavity boundary, the 
function f(ct/a2 ) is shown in Figure 5 (As shown in 
(8), f(ct/a2) exhibits only a slight dependence on 
material properties over the range of interest). Note 
that f(ct/a2 ) reaches more than 50% of its drained 
value for t - 0.1 a2 /c so that this time rather than 
a2/c might be regarded as characteristic.

1.5 2.0

Figure 5. Time dependent shear strain of the cavity
wall (r=a) due to sudden application of T . 
f(ct/a2) = [ Y (a,t) - Y(a,0)]/[ Y (a,»)-Y(a,0)] 
From (8).

The solutions (29), (31), and (35) can be general­ 
ized by straightforward superposition to arbitrary time 
variation of the loads at the cavity boundary. The 
Eshelby relations for the spherical inclusion are then 
obtained by combining these solutions with those due to 
uniform stress and strain in the same manner as was done 
in deriving (5). The resulting Eshelby relations are

-e (t)] (3/4) [ainc (t) - (t)] (37)

where g(r,t) is to be determined.(Note that this func­ 
tion differs slightly from that used in (8)), The
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  [Trc(t-t')3

G[Yinc

(39)

where the last equation, which was derived from (35), 
has been specialized to a single component of shear. 
In equation (38) for m-f nc (t)» it has been assumed 
that po, and om are such that m^ is constant. It 
has also been assumed that the pore fluid pressure in 
the inclusion is homogeneous. This cannot, of course, 
be true exactly but it is likely to be a good approxi­ 
mation if the inclusion is more heavily fissured than 
the surrounding material as is plausible for the pres­ 
ent application.

Equations (37), (38) and (39) relate the state in 
the inclusion to the state in the far field in a manner 
which is analogous to (5). If constitutive relations 
for Tinc» °inc and minc are 8iven ln terms of 
Yinc» einc» and Pine* tnese equations (with the lin­ 
ear elastic relations for the surrounding material) 
are sufficient to determine the time-dependent response 
of the inclusion in terms of the loads applied in the 
far field. RR (9) have carried out this procedure to 
analyze in detail the transient stabilization of run­ 
away instability by coupled deformation diffusion 
effects. In their analysis, RR (9) consider separ­ 
ately stabilization by the time-dependent stiffness of 
the surrounding material and by dilatant hardening of 
the inclusion. Their results are reviewed in the suc­ 
ceeding subsections.

Stabilization by Time-Dependent Stiffness of 
Surroundings
As shown schematically in Figure 3 and analyti­ 

cally by (35), the unloading stiffness of the material 
surrounding the inclusion is G/t. for drained condi­ 
tions and G/£ for undrained conditions where £ 
and £ are given following (35) for the spherical 
inclusion. Hence, the ratio of drained to undrained 
response is £/£  and since £ < £, instability 
can be delayed as shown in Figure 3. Based on the 
earlier mentioned estimates of in situ values for v 
and v , RR suggest that representative values of 
£/C u lie in the range from 1.10 to 1.25.

If dilatant hardening of the inclusion is neg­ 
lected, the stabilization by time-dependent stiffness 
can be addressed with reference to equation (39) with­ 
out regard to (37) and (38). Specifying a constitutive 
relation for Tinc versus Yinc in (39) yields a non­ 
linear integral equation for the time-dependent strain 
in the inclusion. RR use (9) for T. versus Yj; nc 
and express the result for Y|nc in nondimensional 
form as

'inc ~ Y,
= F(6; R, (40)

where Y 
9 = ct 
sion time and

jv, is the strain at which instability occurs, 
/a2 is time nondimensionalized by the diffu-

rm /GA)

is a nondimensional. forcing term which is proportional 
to the product of the diffusion time a2 /c and the far 
field stress rate  ? . Because the tectonic stress 
rate represented by TW is very small (measurements of 
strain accumulation in Southern California suggest 
TOO = 10kPa/year (0.1 bar/year) (24_, 25)), R is typi­ 
cally a small number and RR investigated values rang­ 
ing from 10~4 to 3. The solution was found to be 
relatively insensitive to the value of £. A representa­ 
tive result is shown schematically in Figure 6 where 
the dashed curve shows the response in the absence of 
pore fluid effects. The nondimensional precursor time
®prec = ctprec' a *s defined as the time which elapses 
between the point B 1 at which runaway would have 
occurred in the absence of pore fluid effects and final 
instability, at D*. RR give a plot of 6 versus 
R for £/£u * 1.10 and £/£u = 1.25. Although the 
dimensional precursor time t_rec does increase with 
the size of the inclusion zone, it is not proportional 
to the diffusion time a2/c: the precursor time in­ 
creases much more slowly with inclusion size than does 
the diffusion time. RR give extensive numerical re­ 
sults for representative ranges of parameters. The 
parameters describing the inclusion stress strain curve 
are taken to be the following: rn » 100 MPa (= Ikbar),v-3 r3 p
\ - 2.5 x 10~J , Yp - 6.25 x 10-^ 'and G = 20 GPa 
(- 200 kbar). For inclusion radii of 1 to 5 km, 
 £  «= 0.1 MPa/year (1 bar/year) , c = 0.1 m2/sec and 
1.0 m2/sec, and C/£u = 1.10 and 1.25, they find pre­ 
cursor times of 15-400 days based on stabilization by 
time-dependent stiffness of the surroundings, although 
they suggest that the lower limit may be more indica­ 
tive of when precursory variations could easily be 
detected.

prec

Figure 6. Typical postpeak variation of inclusion 
strain with 6 = ct/a2 as calculated in 
(£) for stabilization by the time depend­ 
ent stiffness effect. Far field loading 
rate is constant. Dashed curve shows 
drained response (as in Figure 2). Points 
B' and D' correspond to points in Figure 
3. For numerical values, see (9).

Rice (_1) has also calculated precursor times for 
the time-dependent stiffness mechanism by approximating 
the response function f(9) in (39) by

f(6) « 1 - e~a9

where a is chosen to give the best fit. This corre­ 
sponds to approximating the actual response of a fluid- 
infiltrated solid by that of a standard linear solid 
with long and short time responses chosen to coincide 
with drained and undrained behavior, respectively. Al­ 
though the approximation to f(6) is not a particularly 
good one, the precursor times calculated by Rice (1) 
agree well with those calculated by RR. Because this



approximation does result in a great saving of computa­ 
tion time, it may be useful in future calculations.

Stabilization by Dilatant Hardening
For the analysis of dilatant hardening, it is nec­ 

essary to generalize the constitutive relations (equa­ 
tions (14) and (15)) of the inclusion to include the 
effects of variations in pore fluid pressure. This can 
be accomplished by using the effective stress principle: 
the hydrostatic stress o is to be replaced in (14) 
and (15) by a linear combination of o and p. For 
elastic deformation Kur and Byerlee (31) (also see 
(12)) have shown that the correct form of the effective 
stress is

o - (1 - K/Kg )p

where, as before, K is the bulk modulus of the matrix 
material and K is the bulk modulus of the solid con­ 
stituents. This form of the effective stress assumes 
isotropic behavior, but Carroll (36) has given the gen­ 
eralization for anisotropy. Rice (37) has shown that 
for inelastic deformation typical of brittle rock, 
that is, inelastic deformation arising from frictional 
sliding at sharp asperity contacts and microcracking 
from sharp-tipped fissures, the appropriate form of the 
effective stress is o - p. Making these replacements 
in (14) and (15) yields

is defined by the following expression:

Y = T/G + IT - y(o - p)]/h (41)

£ « - [a - (1 - K/K ) p]/K+3[T - v(o - p)]/h (42)
S

where the subscript "inc" has been omitted. One addi­ 
tional constitutive equation is needed for m the 
change in fluid mass content per unit volume. The 
fluid mass content is related to the apparent volume 
fraction v by m = pv. Linearizing this relation 
yields

dm vQ dp dv (43)

where the subscript "o" denoting the reference value 
will be implicit in the subsequent equations. The 
change in density is given

dp = p (44)

where Kf is the bulk modulus of the pore fluid. The 
increment of apparent volume fraction can be written as 
the sum of elastic and inelastic portions: The elastic 
portion can be expressed in terms of stresses by using 
reciprocity relations (38, 20) and Rice (20, 37) has 
shown that d?v = d?e under the same circumstances for 
which o - p is the appropriate form of the effective 
stress. The final result is

JF - [| - IT1 (5 " P } "
f S

+ 0[T-y(o-p)]/h (45)

The stabilizing effect of dilatant hardening can 
be illustrated simply from (41), (42) and (45) before 
considering the more complicated results of the inclu­ 
sion model. For drained conditions, p  = 0 and dt/dy 
is given by (12) (with a = 0, for convenience). If, 
however, the response is undrained, m = 0 and the 
resulting value of p can be calculated from (45):

p = - B K 1 t/(h + y 6 K 1 ) (46) 

where again for convenience, a = 0 and the modulus K'

__K' (47)

Substituting (46) into (41) -with a = 0 reveals that 
dt/dy is given by an expression analogous to (12) but 
with the hardening modulus h replaced by the augmentec 
value h + y & K 1 , that is,

(dT/dY)undrained
h + y g K T 

1 + (h + y 3 K f )/G (48)

For representative values of y, 8 and K' this in­ 
crease in h can be significant. For heavily fissured 
rock in which most of the porosity is due to long nar­ 
row cracks and a pore fluid bulk modulus comparable to 
that of liquid water (Kr - 2.2 GPa (<= 22 kbar)) , K' * K. 
If, however, K£ is reduced by high temperatures, low 
pore pressure or entrapped gases K 1 * Kj/v. Of course, 
for the inclusion model, the above result is modified 
by the effects due to the constraint of the surrounding 
material. In particular, RR show that for the inclu­ 
sion model the undrained response is given by (48) with 
K* replaced by

KL - M{1 + (K/M) [(vK/K,)(M /M) (l-K./K ) + (1-K/K
£ I 6 I S S

(49)
where M - K/ (1 + 3K/4G) , Mg * Ks/(l + 3Kg/4G) and 
Kj exhibits the same limiting behavior as K' .

RR give a full analysis of dilatant hardening foi 
the inclusion and the details will not be discussed here 
Because they neglect the time-dependent stiffness ef­ 
fects which were discussed earlier, they use (6) rather 
than (39) as the Eshelby relation for shear. Equation 
(6) is used with the other Eshelby relations (37) and 
(38) and with the constitutive relations (41) , (42) , and 
(45) to obtain a set of two coupled equations, an ordi­ 
nary differential equation and an integral-differential 
equation, which describe the time dependent response 
of the inclusion material. The t±nc versus Yinc 
curve is again chosen to be that given by (9) and be­ 
cause this is assumed to be the relation appropriate 
for in situ response, the slope of this curve is re­ 
lated to h as indicated following (18) , that is

dr
inc h + y 8 M
'inc 1 + (h -f y gM)/G

(50)

A schematic representation of the results for the 
time variation of postpeak inclusion strain is shown in 
Figure 7. Also shown in Figure 7 is the decrease of 
inclusion pore fluid pressure from its value at peak 
stress. As shown, the decrease is extremely slow until 
very near instability. In both cases plotted by RR, 
p has decreased by less than 1 MPa (10 bars) by the 
time at which instability would have occurred in the 
absence of pore fluid effects. This result suggests 
that precursory effects due to the decrease in pore 
fluid pressure (e.g., a change in wave speed ratios due 
to vaporization of existing pore fluid (32)) may be ob­ 
servable only very near to instability.

RR also give a plot of 9prec versus the nondi- 
mensional strain-rate y«> tn- As in the case of stab­ 
ilization by the time dependent stiffness effect, the 
length of the precursor time increases with increasing 
size of the inclusion although again the precursor time 
is not proportional to a . For the same tinc versus 
Yjnc curve, the precursor times predicted for stabili­ 
zation by dilatant hardening are generally greater than



those predicted for the time-dependent stiffness ef­ 
fects. However, RR have suggested that the dilatant 
hardening calculations may produce upper estimates of 
the precursor time because the effects of nonlinear 
fluid compressibility at low pressure were neglected 
and the values of the dilatancy factor inferred from 
laboratory results may be much larger than those in 
situ. Nevertheless, the calculations do indicate that 
even very small amounts of dilatancy (too small to 
cause observable changes in seismic wave speed travel 
times) can have a dramatic effect on the evolution of 
runaway instability.

9

(b)

Figure 7. (a) Typical variation of inclusion strain 
with 0 = ct/a2 as calculated in (£) for 
stabilization by dilatant hardening effect. 
Far field loading rate is constant. Dashed 
curve shows drained response (as in Figure 
2). Points B 1 and D 1 correspond to 
points in Figure 4. (b) Decrease in inclu­ 
sion pore pressure as instability is ap­ 
proached. For numerical values, see (9).

Experiments on Dilatant Hardening. Reynolds (16) 
has described a number of simple laboratory experiments 
which illustrate the dilatant hardening of granular 
materials and Brace and Martin (18) have observed dila­ 
tant hardening in axisymmetric compression tests on 
brittle rock. The experiment of Brace and Martin (18) 
was actually concerned with investigating the "effective 
stress principle" which, in this context, states that 
the deviatoric stress at which failure occurs is unal­ 
tered by increases of equal amounts in the confining 
stress and pore fluid pressure. They observed agree­ 
ment with this principle at low strain-rates but at 
higher strain-rates they observed a strengthening which

they attributed to dilatant hardening. However, the 
analysis of RR indicates that the coupling of dila­ 
tancy and pore fluid diffusion, in addition to delay­ 
ing the onset of instability, or strengthening the 
rock mass, can set the time scale of the failure proc­ 
ess. Recently, Martin (19) has examined more closely 
this aspect of stabilization by pore fluid effects in 
axisymmetric compression tests on Westerly granite. 
Martin's (19) results will be reviewed here and dis­ 
cussed in the context of the predictions of RR.

Martin (19) conducted axisymmetric compression 
tests on fluid saturated samples of Westerly granite at 
different strain-rates, confining pressures, and pore- 
fluid pressures. Each sample was deformed at constant 
confining pressure and constant load rate although near 
instability (within several minutes of failure) the 
actual loading rate deviated from the prescribed value 
because of the inability of the loading apparatus to 
keep up with the rapid deformation of the sample. Dur­ 
ing each experiment, the pore fluid pressure in a 
reservoir attached to one end of the sample was held 
constant. (Of course, the actual pore fluid pressure 
in the sample will differ from that in the reservoir 
if dilatancy occurs at a rate faster than pore fluid 
can diffuse into the sample) . Typical results for the 
time variation of nominal axial strain are shown in 
Figure 8 for_dif ferent values of the effective confin­ 
ing stress oc (confining stress minus pore fluid 
pressure) and ratios of reservoir pore fluid pressure 
prev to confining stress a . Figure 8 has been re- 
plotted from Figure 1 of Martin (19) in terms of the 
nominal axial strain (axial displacement divided by the 
sample length I = 3.81 cm) and time nond imensi onalized 
by the diffusion time SL*/c where c = 0.22 cm2/sec, 
given by Rice and deary (12) for Westerly granite. 
Martin (19) discusses the results in terms of a quali­ 
tative classification of the curves as stable, unstable 
(Martin uses "dynamic"), or transitional. Curve (a) 
(for cTc = 102 MPa (1 kbar) and Prev/ac = 0.20) rep­ 
resents unstable behavior: there is an abrupt acceler­ 
ation of strain terminated by an audible fracture (in­ 
dicated by the dashed line in Figure 8) . Curve (c)
(for 50 MPa (500 bars), P/<? = 0.64) repre­
sents stable behavior: there is a relatively long 
period of accelerating strain followed by inaudible
fracture. Curve (b) (for oc = 102 MPa (1 kbar), pT

0.6) illustrates transitional behavior.

'axial

Figure. 8. Variation of nominal axial strain e ax£ai with 
6 = ct/£2 (c = 0.22 cm2 /sec, £ =3.81 cm) ob­ 
served by Martin (19) . Redrawn from Figure 1 
of (19) so that curves coincide at left hand 
edge.



In spite of obvious differences between the experi­ 
mental configuration and the model analyzed by RR, the 
titae variation of nominal axial strain in Figure 8 is 
qualitatively very similar to the variation of inclusion 
shear strain predicted by RR. Martin's qualitative 
classification of stable or unstable corresponds roughly 
to the length of the precursor time: short or nonexis­ 
tent precursor times would be classified as unstable; 
long precursor times correspond to stable behavior (Ob­ 
viously, the classification depends to some extent on 
the time scale of interest).

Martin (19) also plots the stress difference at 
failure against the ratio p /o and finds that the 
transition from unstable to stable behavior occurs at 
lower values of the stress difference for higher values 
of prev/o . Moreover, the value of Prev/^c at which 
the transition occurs increases with strain-rate. These 
trends appear to be due to the limit on the pore pres­ 
sure decrease and, hence, on dilatant hardening, which 
is imposed by the ambient level of pore fluid pressure 
in the sample. In the calculations of RR, the bulk 
modulus of the pore fluid was assumed to be constant 
and consequently the decrease of pore fluid pressure 
could become unbounded as instability was approached. 
If, however, effects of nonlinear fluid compressibility 
had been included, the bulk modulus of the pore fluid 
Kj would vanish when the absolute magnitude of the pore 
pressure neared zero, that is, when the pore fluid pres­ 
sure decrease equals in magnitude the ambient value of 
pore pressure (or, perhaps, well before this point if 
decreases in pressure cause substantial exsolution of 
gases). Because the dilatant hardening effect vanishes 
in the limit as K£ goes to zero (see discussion fol­ 
lowing (48) and (49)), runaway instability would occur 
at this point and the precursor times would be shorter 
for decreasing values of the ambient pressure.

Stabilization of Narrow Inclusion Zones
The results of RR apply rigorously only for 

spherical zones. For very narrow zones, the inclusion 
model may be inappropriate: the stress concentrations 
near the ends of the zone may cause the zone to spread. 
In this case a model of a spreading crack-like zone of 
inelasticity (1^, 2^, 14; also, Rice, this volume) may 
be more suitable. Nevertheless, it is still of inter­ 
est to consider the inclusion model for narrow zones 
because, at the very least, the predictions are rele­ 
vant to assessing conditions for the initiation of 
narrow spreading zones.

For the stabilization of runaway instability by 
the time dependent stiffness effect, RR obtained 
approximate results for narrow inclusion zones simply 
by using an appropriate value of £. As mentioned fol­ 
lowing (7), £ = 10 for a narrow axisyrametric inclusion 
of aspect ratio a/b = 18. The predicted time variation 
of inclusion strain for narrow zones is similar to that 
for spherical zones, but RR find that the precursor 
times for the narrow zone are 10 to 20 times smaller.

Rudnicki (T) has also given a direct plane strain 
analysis for the stabilization of slip on a frictional 
surface by the time dependent stiffness effect. He sim­ 
ulated the fault by two edge dislocations of opposite 
sign with the distance between them chosen so that the 
relative slip midway between the dislocations is equal 
to that at the center of a crack of length 2L. 
Rudnicki (7) obtained an Eshelby relation analogous to 
(39) by using the plane strain solution of Rice and 
Cleary (12) for a dislocation suddenly introduced into 
a Biot solid (The solution for the special case of in­ 
compressible solid and fluid constituents was obtained 
in (13)). The constitutive response was specified as a 
relation for the shear stress on the fault as a function 
of the relative slip 6. Qualitatively, the results are 
similar to those of the inclusion model. Moreover, if

the parameters of T versus Y relation are chosen to 
be consistent with the T versus y relation for a 
narrow inclusion (Even though, as noted by Rudnicki (2), 
there seems to be some discrepancy when constitutive 
parameters estimated from experiments on intact rock 
are applied to deformation of narrow zones and compared 
with parameters estimated from frictional sliding ex­ 
periments) the predictions for the precursor time are. 
in good quantitative agreement. This agreement is in 
spite of the fact that the calculation of Rudnicki (7) 
was for plane strain whereas that of RR simulated a ^_ 
narrow axisymmetric fault zone. Generally, howi&rr^ 
the precursor times predicted by Rudnicki (J_> are very 
short, typically less than a few days f&- a plausible 
range of parameters describing the T versus 6 rela­ 
tion, fault lengths of 1 to 5 km., a tectonic stress 
rate of 10 kPa/year (O.j> bar/year) and field diffusivi- 
ties of 0.1 to 1.0 m2/sec.

One particularly interesting feature of the calcu­ 
lation of Rudnicki (7) for slip on a frictional surface 
is that the dimensional precursor time tpj-gc can de~ 
crease with increasing fault length L. This result 
contradicts the expectation that the precursor time 
should scale roughly as the diffusion time which is 
proportional to L^/c. Nevertheless, this result can 
be rationalized by a simple dimensional analysis. The
nondimensional precursor time 
be expressed as

prec

prec
F[Q;

where Q is a nondimensional driving force which is 
proportional to the far field stress rate ?  and may, 
in addition, be a function of the various nondimensional 
groups which enter the problem. This dependence can be 
expressed as

Q = f[v, v , T L2/cG, L/6*, Ar/G] u  »

where AT is the difference between peak and residual 
values of friction stress, 6* is the amount of slip 
on the fault which is necessary to reduce the shear 
stress there from the peak value to the residual value, 
and the remaining quantities have been defined previ­ 
ously. The presence of the nondimensional length L/6* 
introduces the possibility that Q will increase faster 
with L than does the diffusion time. In particular, 
Rudnicki (T) assumes a quadratic T versus 6 relation 
and in this case Q has the following form

Q « (T L2/cG)(At/G)(L/6*) 2

Because Q is proportional to L whereas the diffu­ 
sion time is proportional to L , increasing L causes 
the driving force to increase faster than the diffusion 
time and, consequently, results in a decrease of the 
precursor time with L, at least for a range of param­ 
eters.

As yet, there has been no complete analysis of 
coupled deformation diffusion effects associated with 
dilation of a narrow fault zone. Rudnicki (21) (also 
see (39)) has given some preliminary analysis which 
suggests that the dilatant hardening effect is extremely 
strong for very narrow zones. This strong effect may, 
however, be mitigated by the fact that shear of a nar­ 
row zone or slip on a surface may be able to generate 
only a limited amount of dilatancy. In addition to the 
dilatant hardening effect, there is also an effect due 
to the time dependent response of the material surround­ 
ing the fault to uplift on the fault surface (This ef­ 
fect did not appear in the analysis of spherical



inclusions because the response to hydrostatic stress 
(see eq. (37)) is the same for drained and undrained 
conditions). This effect turns oat to be destabilizing 
in the sense that the effective contpressive stress on 
the fault is less for undrained response than for 
drained response. Nevertheless, the preliminary indi­ 
cations are that this effect will be overwhelmed by the 
stabilizing effect of dilatant hardening.

CONCLUDING DISCUSSION

This paper has reviewed some predictions for pro­ 
cesses preparatory to earthquake faulting based on 
modeling a fault zone as an embedded inclusion. The 
model is intended to apply to shallow crustal events 
for which the rock responds in an essentially brittle 
fashion and for which the boundary condition at the 
bottom of the lithosphere enters only in determining 
the far field stress rate. Because the rock mass has 
been assumed to be unbounded, the analysis applies 
strictly to earthquake events which are small enough 
that effects of the free surface are not significant.

For fault zone material which is strain-softening, 
as is typical of brittle rock, the model predicts that 
runaway instability will be preceded by an acceleration 
of inclusion shear strain. If the deformation of the 
rock mass is coupled to the diffusion of an infiltrat­ 
ing pore fluid, then instability can be delayed for a 
length of time, which is defined as the precursor time, 
and the acceleration of strain prior to instability is 
more pronounced.

The precursory effects described here are short- 
term, on the time scale of days rather than years. For 
a spherical inclusion zone of radius 1 km., RR give 
2 to 10 days as a minimum estimate of the time period 
prior to instability during which precursory effects are 
likely to be detectable. For very narrow zones, this 
time period will be shorter although in this case, a 
spreading crack-like zone of inelasticity is probably 
a more appropriate model than an inclusion zone.

The precursory acceleration of inclusion shear 
strain may be detectable as an increased rate of defor­ 
mation (tilt or strain) of the ground surface although 
the magnitude of the effect will decrease roughly as 
the inverse square of distance from the fault zone. 
Changes in physical properties due to the microcracking 
which accompanies the inelastic straining may provide 
more easily detectable precursors. The calculations 
of KR suggest that relatively large amounts of dila- 
tancy are needed to cause changes in seismic properties 
by the undersaturation of fluid-infiltrated rock. How­ 
ever, transport properties may be affected by smaller 
amounts of microcracking causing changes in restivity 
(40) or radon content of wells (41). Moreover, resis­ 
tivity changes may be augmented by the flow of pore 
fluid induced by deformation of the inclusion zone.

The model which has been reviewed here is a simple 
one and more elaborate models could be constructed. 
Coupled deformation diffusion effects have been analyzed 
precisely only for spherical inclusions and the effects 
of geometry could be considered more carefully. A full 
analysis of the effect of localization of deformation 
on the subsequent response of the inclusion has not yet 
been given. It may be that localization of deformation 
initiates a spreading crack-like zone of inelasticity, 
prior to the onset of runaway, rather than simply modi­ 
fying the bulk response of the inclusion material as 
assumed by RR. In any case, the results of Rice and 
Simons (14) for stabilization of a spreading fault by 
the time dependent stiffness effect are promising and 
this is an area that would seem to merit more attention. 
However, at present, the most pressing need seems to be 
for more accurate values of material and transport 
properties, particularly values appropriate to in situ 
behavior.
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Abstract

This note corrects expressions given by Cleary (1977) for fluid mass source 

and dipole solutions in linear fluid infiltrated porous elastic solids. The 

correspondence between point force and fluid mass source solutions, which because 

of an algebraic error in Cleary's analysis is only partially revealed there, 

is fully exposed here. In particular, the stress and displacement fields due to 

a suddenly applied point force are demonstrated to comprise a time independent 

portion, which is the classical elastic solution based on the undrained (short- 

time) moduli and a time dependent portion, which is the solution for a continuous 

fluid mass dipole. A corollary is that the time dependent functions entering the 

point force solution can be obtained from a single function which enters the 

solution for a fluid mass source.



Introduction

Although the response of near surface earth materials is seldom likely to 

be precisely linear, the theory of linear fluid infiltrated elastic solids has 

proven to be very useful in studying a variety of geotechnical and geophysical 

problems. These include soil consolidation [1, 2], hydraulic fracture [3, 4], 

and various aspects of earth faulting [3, 5, 6, 7, 8, 9, 10].

The governing equations of a linear fluid infiltrated elastic porous solid 

are precisely the same as those for the fully coupled theory of linear thermo- 

elasticity. However, the coupling which can be justifiably neglected in thermo- 

elasticity must be retained in the porous media equations. This coupling greatly 

magnifies the difficulty of analysis and, as a consequence, there are a very 

limited number of analytical solutions for these equations. This situation was 

greatly improved by Cleary [11] who, in a elegant and extensive analysis, 

established the three dimensional fundamental solutions and outlined their use 

in modelling embedded regions of inelasticity. However, as a result of an 

algebraic error in the expressions given by Cleary [11] for the continuous mass 

source solution, the full extent of the correspondence between point force and 

fluid mass source solutions is not revealed. This note fully exposes this 

correspondence and in so doing corrects the expressions given by Cleary [11] 

and tabulates them in an alternate, more compact form. It is hoped that these 

results will facilitate the implementation of Cleary's solutions to more complex 

boundary value problems.

Review of Governing Equations

The most direct formulation of the governing equations for a linear fluid- 

infiltrated porous elastic solid, which were first established by Biot [2], has 

been given by Rice and Cleary [3] and this treatment will be followed here. If 

the deformation occurs so slowly that the infiltrating fluid mass has sufficient



time to diffuse from material elements, there will be no alteration of pore

fluid pressure. In this limit of longtime deformation, the response is labelled

drained and the total stress a. . is related to the displacement gradient

u. .(= 8u./3x.) as in an ordinary linear elastic solid: 
^ jJ i 3

a. . = y(u. . -f u. .) -f Xu. . 6. . (1) 
13 i»3 3>i k,k ij

where X and y are the Lame moduli appropriate for drained response and 6 . . 

is the Kronecker delta. More generally, a term proportional to the pore fluid 

pressure must be included in (1) :

a. . = y(u. . + u. .) -f Xu. . 6.. - £p<5 . . (2) 
13 i>3 3»i k,k 13 ^^ ij

where £ = 1 - K/K T , K(= A + 2y/3) is the drained bulk modulus and K f is
s s

an empirical constant which, under circumstances stated precisely by Rice and 

Cleary [3], can be identified with the bulk modulus of the solid constituents, 

A second constitutive relation is needed for the alteration in m , the fluid 

mass content per unit volume of porous solid:

m - m = Cpu, ,
O \J Jx j ix.

where m is the reference value of m , p is the mass density of homogeneous 

pore fluid and X is the Lame modulus for undrained response. Undrained 

response occurs when load alterations are too rapid to allow time for fluid mass

diffusion from material elements. Hence, m = m for undrained response and
o

solving for p from (3) and substituting into (2) recovers the form of (1) with 

X replaced by X . These constants satisfy X < X < °° where the corresponding 

relation in terms of Poisso^s ratio v(= X/2(X + y)) is v < v < 1/2 . In 

both relations the upper limit is attained for separately incompressible



constituents and the lower for highly compressible pore fluid. Setting m = m 

in (3) and using (2) to eliminate u, , reveals that for undrained response
fC ) fC

the alteration of pore fluid pressure is given by

p = -Bakk/3 (4)

where B = (X - X)/c(X + 2y/3) is Skempton's pore pressure coefficient [3].

The constitutive formulation is completed by Darcy T s law which, in the 

absence of body force, is given by

q. = -p K9p/3x. (5)

where q. is the mass flow rate per unit area in the x. direction and K is 
ni r i

a permeability. The permeability is often expressed as K = k/y where k is 

measured in units of area and y is tne fluid viscosity.

The constitutive equations (2), (3), and (5) must be combined with field 

equations expressing equilibrium and fluid mass conservation. In the absence of 

body forces, the equilibrium equation is

a.. . = 0 (6) 
ij»i

or, if (2) is substituted into this equation, it becomes

(X + y)u. .. + yV2u. - CP . = 0 (7)

2 2
where V (. . .) = 9 (. . .)/3x 9x . Another useful equation can be obtained

rC rC

by forming the divergence of (7). The result is

V2 [(X + 2y)uk k - cp] = 0 . (8)



The equation of fluid mass conservation is

V   q + 8m/3t =0 (9) 

where V   q = q, , . Substituting Darcy's law (5) into (9) and using (3) and
***  *» zC y zC

(8) yield a homogeneous diffusion equation for m [3],

cV m = 8m/at (10)

where the diffusivity c can be expressed as follows

c = KC~ttu - X)[(A + 2y)/(Xu + 2y)] .

Point Force Solution

The point force solution given by Cleary [11] will be outlined here for 

later comparison with the corrected expressions for the fluid mass dipole 

solutions. In addition, the influence functions will be written in a form which 

is somewhat more compact than that given by Cleary.

Consider a point force P, to be suddenly applied at the origin at t = 0.
zC

This point force may, of course, be regarded as a body force P 6(x)H(t) entering 

(6) where 6(x) is the three dimensional Dirac delta function and H(t) is the 

unit step function. Cleary f s [11] construction of the solution begins by 

recognizing that linearity, isotropy, and dimensional analysis require the 

resulting pore pressure response to have the following form

P x
p(x, t) = -^ g;L (r//cT) (11) 

r

1/2 where r = (x x ) and g (Cleary used f_) is to be determined. Note that
zC zC JL JL

the argument of g, is dimensionless and because drained conditions will be



attained at t = °° , g^CO) = 0 . Cleary [11] uses the same considerations to 

deduce the form of the resulting displacement field

(A + y) 
(A + 2y )

(X + 3y) 
j (X + 2y)

(12)

1/2where g2 and g» are to be determined and the abbreviation £ = r/(ct)

has been introduced. As t -> °° , the expression (12) must reduce to the classical

elasticity solution based on the drained moduli and, consequently, the coefficients

have been chosen such that g 0 (C = 0) = = 0) - 1 . The functions f ? and

_ used by Cleary [11] are related to g? and g,,

= [(A + y)/8Tr(A + 2y)]g

= [(A + 3y)/87r(A + 2y)]g3 .

Substituting (11) and (12) into (2) yields the form of the stresses

47TT G . . 
1J (A + 2y)

3 (A + y) XiXj XkPk 
(A + 2y) 2 r

P.x. + x.P

(13)

where

~ (14a)

= -(A (14b)

and



= y -[(A + y)(A + 2y)g2 + A(A + y)£gj; + A(A -f 3y)

(14c)

where (. . .) ?= d(-   -)/d£   The functions G , G , and G.. equal unity 

for £ = 0 (t = °°) and they differ by constant factors from

FI (= -3(A + y)G1/47r(A + 2p)) , F£ (= -pG2/47r(A + 2y)) , and 

F (= yG MTT(A + 2y)) used by Cleary.

Solution then follows from the procedure discussed in detail by Cleary [11] 

essentially, (6), (8), and (10) are used to obtain ordinary differential 

equations for G- , G^ , G,, , and g- which can be solved to determine these 

functions up to a constant term; (14a) and (14b) are then used to determine g» 

and g^ and (14c) yields the value of the constant.

The resulting expressions for G.. , G« , and G,, can be written in 

compact form as follows:

(A - A)
(A U + 2u) [hl (O " h2 (O] (15b) 
u

(X - X) 
(X + 2p) [hl (C) + h2 (C)] (15c)

where



2>/7T

2
~ T1 /4dn = er

-2
4 -n M, 1 e ' dr)

and erf(z) = (2//n:)
2-x 

e dx

The function h.. (£) is zero at £ = 0 (t = °°) and unity at £ = °» (t = 0)

whereas h_(^) vanishes at both limits.

The functions g , g» , and g_ can be written as follows

(16a)

u
(X
u

u
(Au + 2u)(A

(16b)

(16c)

(The expression given for f~ by Cleary [11] in his equation (31) contains an

2extra factor of 2 in the coefficient of £exp(-£; /4) but the preceding

expression in his eq. (29) is correct.)

Fluid Mass Source

To obtain the solutions for fluid mass sources, Cleary [11] used the 

procedure of Rice and Cleary [3] for spherically symmetric problems. However, a 

slightly different approach, analogous to that used by Cleary to obtain the point



force solution, is used here.

The fundamental source solution of (10) corresponding to the instantaneous 

injection of an amount Q of fluid mass at the origin at t = 0 is well known 

to be (e.g. [12])

m(x, t) =    Z-rjr exp(-r 2 /4ct) (17)
(47TCt) '

The corresponding displacement field is spherically symmetric and is required by 

dimensional analysis, linearity, and isotropy to have the following form:

Q x. 
u± (x, t) = --|u(r/i£t) (18)

Po r

where the dimensionless function U can be determined by substitution of (17) 

and (18) into (7) after using (3) to eliminate p in favor of m - m . Solution 

of the resulting equation yields

(19)

where h-(£) has been given following (15). The pore pressure can be determined 

from (3) and the result is

(A - A)(A + 2y) . , 2,. .
P(x, t) = -^   -     - ± e*P (-r '£? (20) 

C (A + 2y) P o (47rct) J/Z

The stress computed from (2) is

y(A - A) xx 
a.. =-^-  ~       [6-..(h. - Chl) +-V- (£hf- - 3h_)] (21)

13 p o 27ir C(A + 2y) 13 L L r L ^



where the prime again denotes differentiation with respect to the argument.

The solutions for continuous injection of fluid mass at a constant rate 

q can be obtained by the usual superposition procedure: replace Q by q dt 1 

and t by t - t' in (17) and (18) and integrate from t' = 0 to t' = t . 

The results are as follows:

ra(x, t) = (qMircr) erfc(£/2)

where erfc(z) = 1 - erf(z) and

(22)

X.
u. (x, t) = -9    

poc r

X - X 
u

2y)
(23)

where

= erfca/2) -f (24)

The pore fluid pressure and stress can then be calculated from (3) and (2). 

These are

P (x, t) -K ~* p c 4-rrr r

- X)(A + 2y) 

2 (A + 2y)
erfc(£/2) (25)

and

(A.. - X)y f 6

u

x.x. 
4 --1 [erfc(£/2) -f

(26)
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The last expression (26) corrects that given in eqn. (39b) of Cleary [11]. As 

mentioned earlier, Cleary [11] solved for the stresses directly by using the 

procedure of Rice and Cleary [3] for spherically symmetric problems. The stress 

a is given correctly in Cleary T s eqn. (39a) but he omits a factor of one- half 

in the first term of the expression for a_ Q . Consequently, the cartesian
DO

coordinate form of the stress given in eqn. (39b) is incorrect and, because this 

expression is used to obtain the stress field of a fluid mass dipole, the dipole 

stress :'field given in Cleary's [11] eqn. (43) is also incorrect. The correct 

expression is given in the next section.

Fluid Mas s Dipoles

The solution for fluid mass dipoles can be obtained from the source solutions 

of the last section by the usual technique: if a particular field quantity is 

given by qF(x, t) for a source of strength q , then the corresponding quantity 

for a dipole of strength q and direction h is given by

Applying this procedure to the fluid mass solution for a continuous source given 

by (22) yields

q x
m(x, t) =    -f [1 - h..(O] (28) 

. ,3 14irc r

where qa = qh . Similarly, the solutions for the pore fluid pressure, 

displacement, and stress follow from (24), (25), and (26) respectively. These 

are recorded below:



p(x, t) = p oc
- X)(X + 2y)

2y)
(29)

/ ,-N Wu (x, t) = -  -
1 ~ p C 

O
2y)

- u(O]

(30)

where u(£) is given by (24); and

a (x, t) = o c

- A)y

(A + 2y)

(31)

where

= erf c a/2) - 

= erfc(C/2) +

Alternatively, the functions £_ and £  can be expressed as follows in terms 

of

and
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As noted by Cleary [11], the time dependence of the pore fluid pressure p 

(29) bears an obvious resemblance to the pore pressure field of a suddenly 

applied point force ((11) with (16a)). Specifically, the value of p in (29) 

minus its long-time value (t = °°, £ = 0, h, (£ = 0) = 0) is the pore fluid 

pressure due to a point force with components given by

(32)

However, because of his error in computing the continuous fluid source stress 

field and hence the dipole stress field, Cleary [11] did not recognize that the 

dipole stress and displacement fields bear a similar relationship to the point 

force solution. In particular, (30) can, after some rearrangement, be rewritten 

as

qa

p oc?

  

(A + 2y) j 0
8irr 1 u ia

(A + 3y)

(A + 2y)
(A H
(A H

h 3y)
r\ \ ft o V ^ JfL 2y) °3

(33)

x.x
i a
r 2

(A ~t~ y) /^ , \u p (A + y)
(A + 2y) (A + 2y) go(C)

This can be recognized as the difference between the time-independent classical 

elasticity solution based on the undrained moduli for a point force given by (32) 

and the porous media solution (12) for the same point force. Conversely, the 

solution (12) for a suddenly applied point force in a fluid infiltrated porous 

medium comprises the difference between the classical elasticity solution based 

on the undrained moduli and the response to a continuous fluid mass dipole whose 

components are given by solving (32) for q

A corollary of this result is that the two functions g~(C) and g^
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((12) and (16a,b)) can be expressed in terms of the single function u(£) (24) 

or, of course, U(C) (19) from which it was derived. In particular, these 

functions are related as follows:

(X + 2y)(X + y)
u

2y)(X + y)

- X)

83(0 =
(X +

(Xu

2y)(Xu H

+ 2y)(X H

1- 3y)

1- 3y)

2y)

V (A

y) (u (34)

1 + (X 3y) u(O (35)

The stress field of the fluid dipole has the same structure as the 

displacement field: it is the difference between the classical elasticity 

solution based on the undrained moduli for a point force and the point source 

solution given by (13) and (15). The result is recorded below:

47rr a . = 
U P oc

(X + 2y)
" X 

u

y
+ 2y

 n

X + 2y G3^' x 6. . a 13

(6. x. + 5. x.) la 3 3a i (36)

x.x.x 
i 3 a

2 
r

X 4- y , , u X + y   ff.^
X + 2y 

u
X Hh 2y °l V9y- 3

This expression corrects that given by Cleary [11] in his equation (43). As 

noted by Cleary [11] the dipole solution gives no net force on any contour 

surrounding the origin and the contributions from the two portions of (36) must 

be equal and opposite. It is apparent from the preceding that the functions 

G- , G^ , and G., can also be expressed in terms of u
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Concluding Discussion

This note has corrected some expressions given by Cleary [11] for fundamental 

solutions in linear elastic porous fluid infiltrated solids. More importantly, 

the corrected expressions reveal the full extent of the correspondence between 

the point source solutions and fluid mass dipole solutions. In retrospect, this 

correspondence is an inevitable result of the fact that the governing equations 

reduce to the usual elasticity equations in the long and short-time limits. An 

additional result of this analysis is that the time dependence of the point force 

solution is expressible in terms of a single function which arises in the solution 

for the displacements due to a continuous fluid mass source.

The rearrangement of the point force solution which has been given here may 

prove advantageous in the construction of solutions to boundary value problems 

and simulation of anomalous zones of plasticity, as outlined by Cleary [11]. 

Specifically, some simplification may result from the separation of the solution 

into two components one of which is a solution to the classical elasticity 

equations with the undrained moduli and one which is a solution to the homogeneous 

diffusion equation. However, the difficulty in solving boundary value problems 

inevitably enters in the coupling introduced in the boundary conditions [3, 7] 

and it is unlikely that this complication can be avoided.
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Solutions for collinear shear cracks are used to examine quantitatively the effects of fault slip zone in­ 
teraction on determinations of moment, stress drop, and static energy release. Two models, the barrier 
model and the asperity model, are considered. In the asperity model, the actual distribution of strengths 
on a fault plane is idealized as a combination of two limiting cases: areas which slip freely at a uniform 
value of a residual friction stress and unbroken ligaments or 'asperities' across which slip occurs only at 
the time of a seismic event. In the barrier model, slip zones separated by unbroken ligaments (barriers) 
are introduced into a uniformly stressed medium to approximate the nonuniform fault propagation pro­ 
posed by Das and Aki. The strain energy change due to introducing collinear slip zones or due to break­ 
ing the asperities between them is shown to be given by the usual formula for an isolated slip zone with 
the stress drop replaced by the effective stress. Significant interaction between slip zones occurs only if 
the length of the asperity is less than half the length of the slip zones. For the case of two collinear slip 
zones, fracture of the asperity between them is shown to cause a large moment primarily because of the 
additional displacement which is induced on the adjacent slip zones. For example, if the asperity length 
is 0,057, where / is the length of each adjacent slip zone, then fracture of the asperity causes a moment 
almost 1.8 times the moment caused by introducing a slip zone of length /. For two collinear slip zones, 
the local stress drop due to fracture of the separating asperity is shown to become unbounded as the aspe­ 
rity length goes to zero, but in the same limit the stress drop averaged over the entire fault length is ap­ 
proximately equal to the apparent stress drop inferred for an isolated fault of the same moment and total 
fault length. This apparent stress drop is approximately equal (within a factor of 2 or 3) to the effective 
stress and hence can be used in the usual formula to give a good estimate of the strain energy change. For 
the barrier model, numerical results are given for the ratio of the stress drop calculated on the assumption 
of an isolated slip zone to the true stress drop. For example, in the case of two collinear slip zones of 
length / separated by a barrier of length 0.2/, this ratio is 0.5, whereas for a barrier length equal to that of 
the adjacent slip zones, the ratio is 0.24. Stress drop estimates become worse with increasing number of 
fault segments.

INTRODUCTION Bowden and Tabor, 1973]), and they may be due to either ma-
Although earthquake faulting is often idealized as smoothly terial or geometric effects.

varying slip on an isolated zone, it has become increasingly In lhe interpretation of these multiple shocks, it is often as- 
evident from detailed analysis of seismograms that slip on sumed' ^P^citly or explicitly, that the individual events in 
earthquake faults is very irregular. This irregularity is particu- the multiple-shock sequence represent failure of such asper- 
larly evident in large earthquakes which have been shown to ities- In the following discussion we refer to this type of fault- 
consist of a number of distinct events [e.g., Imamura, 1937; mg as the asperity model. Furthermore, it has been suggested 
Miyamura et al, 1964; Wyss and Bnme, 1967; Trifunac and [Kanamori, 1978; Das and Aki, 19776; Aki, 1979; Mikumo and 
Brune, 1970; Nagamune, 1971]. More recent studies on the Miyatake, 1979; Ishida and Kanamori, 1978, 1980; Lay and 
waveforms of these multiple shocks have unravelled some of Kanamori, 1980] that aspenties may control the pattern of 
the details of the stress release in these complex events [e.g., earthquake occurrence, for example, foreshock-mainshock, 
Kanamori and Stewart, 1978; Rial, 1978]. Also, the occurrence swarm> doublet, etc.: as tectonic stress is increased, weaker as- 
and distribution of foreshocks [Jones and Molnar, 1979; Ishida Perities fail and the resulting slip alters the stress in the re- 
and Kanamori, 1978, 1980] and doublet earthquakes [Lay and maining stronger asperities.
Kanamori, 1980] have been used to infer patterns of fault On the other hand, Das and Aki [1977 b] have suggested, on 
plane heterogeneity. Thus it seems likely that the distribution the basis of numerical experiments in dynamic crack propaga- 
of slip and stress on fault planes is very heterogeneous. For tion' that a propagating fault may leave behind unbroken bar- 
faults that have previously undergone large amounts of slip, riers' that is' high-strength areas of the fault plane. They 
the stress on much of the fault plane may be equal to a resid- called this tvPe of faultinS the barrier modeL Several authors 
ual value of the friction stress. However, there are also likely [Madariaga, 1979; Rice, 19796; Aki, 1979] have shown that 
to be regions having higher resistance to slip. These regions seismic parameters inferred by assuming uniform slip or stress 
are usually termed 'asperities' (this term is not meant to be in- dr°P can be in considerable error if the earthquake is repre- 
terpreted in the specific sense in which it is used in the physics sented by the barrier model.
of friction of referring to a geometric surface roughness [e.g., Although these two models would represent the two ex­ 

	treme cases of the actual earthquake process, they are useful 
	for characterizing fault plane heterogeneity. 

Copyright© 1981 by the American Geophysical Union. Madariaga [1979] has given an elegant formula relating

Paper number SOB 1382. 1785 
0148-0227/81 /080B-13 82$01.00
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asperities

Fig. 1. Schematic idealization of a fault plane. Outside the curve 
labeled S there is no relative displacement of the fault surfaces. Inside 
curve S the fault surfaces slip freely at a residual friction stress except 
for the cross-hatched areas which represent 'asperities' across which 
there is relative displacement only during seismic events.

stress drop and moment under general circumstances, and he 
uses this to give some approximate results for a few special 
cases. It is, however, a matter of practical interest to determine 
the magnitude of effects of fault zone interaction on moment, 
static stress drop, and strain energy change. This paper exam­ 
ines quantitatively these effects primarily by using the asperity 
model.

We idealize the distribution of strengths on the fault plane 
as a combination of the following two limiting cases: locked 
segments which slip only at the time of a seismic event and 
segments which freely slip at a residual friction stress. As a 
more specific illustration, consider the idealized fault plane 
shown in Figure 1. The region outside the curve labeled S is 
idealized as locked. Inside curve S, the cross-hatched areas are 
also locked and represent asperities or portions of the fault 
which require a greater level of applied stress in oHer for slip 
to occur. The remainder of the fault inside curve S sustains a 
uniform friction stress r{ but slips freely at stresses larger than 
17. This model can be further idealized as a distribution of 
plane (or antiplane) strain (i.e., of infinite extent in one direc­ 
tion) shear cracks as shown in Figure 2. The variations along 
the fault plane of stress and of relative slip are shown sche­ 
matically. The cracks model slip zones which sustain the uni­ 
form friction stress rf, and the ligaments between the cracks 
(slip zones) represent asperities.

Although this model is oversimplified, it has the advantage 
that existing results for collinear cracks can be used to obtain 
exact, closed-form expressions which make possible a quan­ 
titative assessment of the effects due to the interaction of slip 
zones. Because the idealization is a limiting one, the results 
given here can reasonably be expected to yield bounds for 
more realistic situations. Moreover, the results provide some 
specific numerical examples of the general relations between 
moment and stress drop derived by Madariaga [1979] and il­ 
lustrate the extent to which small strong asperities or barriers 
can control the pattern of stress release. Although many of the 
general results illustrated here are well known, for example, 
that stress drop in a small asperity will exceed the average 
stress drop, the numerical results permit a quantitative assess­ 
ment of the magnitude of these effects and the extent to which 
they depend on the separation distances of slip zones and as­ 
perities or barriers.

The next section discusses some preliminary considerations 
and reviews some results for isolated slip zones before consid­ 
ering the interaction of slip zones separated by asperities.

SOME RESULTS FOR ISOLATED 
SLIP ZONES

Consider an isolated slip zone of length / which is embed­ 
ded in an infinite linear elastic body (Figure 3). For conve­

nience, the slip zone is considered to be of infinite extent in 
one direction so that plane strain conditions apply. The slip 
zone sustains a uniform frictional stress 17 and the body is 
loaded in the far field by the shear stress TX. The stresses near 
the ends of such a slip zone are proportional to r~ 1/2, where r 
is the distance from the edge of the zone, and are character­ 
ized by the stress intensity factor K [e.g., Knott, 1973; Rice, 
1968J, which is defined by the following relation:

0)

where oxy is the shear stress on the plane ahead of the slip 
zone. If the slip zone shown in Figure 3 encloses no net dis­ 
location (so that the displacement field outside the zone is 
single valued), the stress intensity factor is

K, - Or//2)' /2(T~ - r,) (2)

where the subscript denotes the value for an isolated slip zone.
Of course, in any real material, the stresses at the edge of 

the slip zone will not be singular but instead will be alleviated 
by processes of inelastic deformation. If, however, the charac­ 
teristic dimension of this zone of inelasticity or 'breakdown' 
zone is small by comparison with other length scales in the 
problem (e.g., length of slip zone, distance to boundaries, 
etc.), then the intensity of deformation in this zone is charac­ 
terized by K. More precisely, the boundary conditions on the 
breakdown zone are fixed by the singular stress of the sur­ 
rounding linear elastic field. In the absence of any detailed in­ 
formation about processes in the breakdown zone, the near- 
tip stress field can be idealized as singular with the under­ 
standing that K characterizes the actual near-tip field (Rice 
[1968]; also see Rudnicki [1980] for a recent discussion).

Note that a uniform stress -TO,, or -rf may be superposed 
on the stress field in Figure 3 without affecting the relative dis­ 
placement of the fault surfaces. Hence the relative dis­ 
placement may be regarded as due to the application of 
stresses TM - rf to the fault surfaces with zero stress at infinity 
or to application of stresses T« - T/ at infinity with a friction- 
less fault surface. In any case the relative displacement is

- 2(1 -   v2!"2 (3)

where T = T^   T, is the effective stress (which is equal in this 
case to the stress drop), ji is the shear modulus, v is Poisson's 
ratio, and the subscript again denotes the value for an isolated 
slip zone. The average relative slip is

The static moment (per unit thickness) is
 1/2

Af = dx (5)

Stress

Fig. 2. Plane strain idealization of a fault plane as a combination 
of areas which freely slip at the friction stress T/ and areas of asperities 
which undergo no relative displacement.
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where the integration limits imply that the coordinate origin is 
at the crack center, or, for constant /x,

Substituting from (4) yields

- i>)T7r(//2)2

(6)

(7)

for the isolated slip zone. In this formula it is, of course, the 
seismic moment which is determined most accurately from 
observations. The stress drop r is typically inferred from (7) or 
a similar formula on the basis of the observed moment and 
the observed or estimated fault length. As has been discussed 
in detail by Madariaga [1977], this stress drop is not generally 
equal to the average of the true stress drop. However, it will 
be shown that for the geometry considered here the difference 
between these quantities is not great.

STRAIN ENERGY CHANGE
Although the strain energy change during faulting cannot, 

in general, be determined (because the friction on the fault is 
unknown), the strain energy change does provide an upper 
bound to the energy available for seismic wave radiation. The 
strain energy change caused by introducing the slip zone can 
be computed as the negative of the work done by the fault 
surface tractions in restoring the body to the unslipped state 
[Rice, 1966]. If the stress on the fault is reduced to the residual 
friction stress rf , this work is

1 f l/2 
W=r, $1+ - I AT(X) 5(x) dx

2 J-l/2
(8)

where AT(X) is the stress drop. For the isolated zone, AT(X) = 
TOO   rf and, consequently,

The usual interpretation of this equation is that the first term 
is equal to the heat generated by faulting [e.g., Orowan, 1960] 
and the second term is available for seismic energy radiation. 
Comparison of (6) with (9) reveals that this second term, 
which Kanamori [1977] calls W& can be expressed in terms of 
the moment as

WQ = TAf/2jU (10)

where T = T^   rf. Of course, the actual seismic energy radi­ 
ated during faulting depends on the deatils of the rupture 
process (whereas the strain energy change does not; this will 
be demonstrated below for the specific model considered 
here) and cannot be determined from comparison of the static

-b

(o)

(b)
Fig. 4. (a) Geometry for two collinear slip zones. (6) Geometry for 

an infinite periodic array of collinear slip zones.

end-states [Kostrov, 1974]. However, Kanamori [1977] has 
shown that for large earthquakes the energy computed from 
(10) agrees well with the energy determined by using the ob­ 
served magnitude and the Gutenberg-Richter relation (See 
Richter [1958] with correction noted by Kanamori and Ander- 
son [1975].) In the following, we show that the strain energy 
change is also given by (9) for two specific types of nonuni- 
form faulting.

First, we consider an initially unbroken fault. Then failure 
occurs on an array of collinear slip zones separated by liga­ 
ments as shown schematically in Figure 2. This case corre­ 
sponds to the barrier model. The strain energy change is still 
given by (8) if the total length of the fault zone is /. Although 
the slip is very nonuniform, wherever the relative slip is non­ 
zero the stress drop is equal to the effective stress (TOO   r{\ 
and consequently (8) again reduces to (9).

In the second case we suppose that the fault plane is already 
segmented in the initial state and failure of the asperities 
causes reduction of the stress to r, everywhere on a zone of 
length /. This case corresponds to the asperity model. Again 
the pattern of stress drop is very complex: it is zero on por­ 
tions of the fault plane which already sustained the residual 
friction stress T/, but it is nonzero and spatially varying where 
asperities existed. Nevertheless, the strain energy change is 
again given by (8). Note, however, that wherever the stress 
drop is nonzero (at positions which were occupied by aspe­ 
rities), the relative slip is exactly equal to the relative dis­ 
placement for an isolated zone of length /. Hence 5(x) in the 
second term of (8) may, in this case, be replaced by 8,{x) from 
(3). The reciprocal theorem of linear elasticity (e.g., Love 
[1927]; also see Madariaga [1979] for a more detailed treat­ 
ment of a similar application of the reciprocal theorem) re­ 
quires that

Fis. 3. An isolated slip zone. The resistive factional stress is r;, and 
the slip zone is loaded in the far field by T IJO . L (Ar), S(x) dx-r

J-l/2

AT(JC) 5, (x) dx
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/o

Fig. 5. Plot of stress intensity factor for fault tip at x - ±a in Fig­ 
ure 4a (equation (11)) and for Figure 4b (equation (12)) as a function 
ofc/l.

where the subscript / in the first integral denotes the stress 
drop for an isolated slip zone. The stress drop for an isolated 
zone is, however, uniform and equal to the effective stress so 
that the strain energy change can again be expressed as in (9).

These examples demonstrate that for a fault zone of a given 
length, which may comprise any cumber of coliinear slip 
zones, the strain energy change is fully determined by the ef­ 
fective stress and the average displacement regardless of the 
detailed distribution of constituent slip zones or of stress drop. 
Although this result is fully expected from the theory of linear 
elasticity, it often seems to be overlooked in seismology. The 
apparent reason for this is that the actual stress drop, which 
appears in the second term of (8), is not known but must be 
inferred from formulae like (7). Hence calculations based on 
(10) reflect possible inaccuracies in determining the stress 
drop by assuming an isolated slip zone with uniform stress 
drop.

Before proceeding to specific calculations of moment and 
stress drop for collinear slip zones, we present some results for 
the interaction of slip zone stress fields.

(1 - m2 sin2 0)~ l/2 dB

£(m)=/ (1 - m2 sin2 0) l/2 d9 
Jo

The center-to-center distance between the slip zones is c = a 
+ b and the length of each zone is / = b   a. The geometry for 
the infinite periodic array of slip zones is shown in Figure 4b, 
and the stress intensity factor is

T[C tan (7r//2c)] l/2 (12)

The interaction between the stress fields can be evaluated 
by examination of Figure 5, which plots K2 and Kx divided 
by KJ, the stress intensity factor for an isolated crack, a^^a- 
function of c/l. Figure 5 makes it clear that interaction is sig­ 
nificant only when the slipping zones are very close together. 
This result is not unexpected, since the stress field near the tip 
of the slip zone does die off rapidly (as r~ 1/2) with distance. 
The elevation of the stress intensity factor over the value of 
the isolated slip zone is, of course, greatest for the infinite ar­ 
ray of slip zones. Even for this configuration, however, the 
stress intensity factor is greater than Kt by only slightly more 
than 10% when the zones are separated by a distance equal to 
their length (c/l = 2). Hence for greater separations, say, c/l > 
3, the slip zones are effectively isolated. Although the inter­ 
action may be amplified by three-dimensional effects, the re­ 
sults here suggest that interaction is significant only if the as­ 
perities or locked portions occupy a small fraction of the fault 
plane.

A lower limit to the ratio of asperity length to slip zone 
length can be estimated by requiring that the average stress in 
the asperity which is available for release in a seismic event 
does not exceed the ultimate (peak) strength of brittle reck. 
(Aki [1979] has made similar estimates within the context of 
the barrier model.) For an asperity which has a length small 
by comparison to the lengths of adjacent slip zones, the stress 
in the asperity can be approximated by the singular term in 
the crack-tip expansion, that is, K(2irr)~ l/2, where K is the ap-

INTERACTION OF SLIP ZONE 
STRESS FIELDS

Although the solution for an arbitrary configuration of col- 
linear cracks can formally be established using the powerful 
complex variable methods of Muskhelvishvili [1953], only the 
limiting cases of two collinear cracks [Willmore, 1949; Tranter, 
1961; Barenblatt, 1962; Erdogan, 1962, Lowengrub and Srivas- 
tava;, 1968] and an infinite periodic array of collinear cracks 
[Irwin, 1957; Koiter, 1959] need be considered here. The solu­ 
tions for these cases (and for many others) have been summa­ 
rized by Tada et al. [1973]. For two collinear cracks, the geom­ 
etry is shown in Figure 4a. The stress intensity factor at the 
interior fault tip (x = ±a) is given by

b2E(m)/F(m) - 
a(b2 - a2)"2 (11)

where r   r^   77 is the excess of the far field stress over the 
frictional stress, m2 = 1   a2/b2, and F(ni) and E(m) are com­ 
plete elliptic integrals of the first and second kinds, respec­ 
tively:

1.02 I.O4

Fig. 6. Moment due to the introduction of two collinear slip zones 
of length / divided by 2 times the moment due to introduction of an 
isolated slip zone of length / plotted as a function of c/l (see (16) and 
(7)). Also shown is the moment for an isolated zone of length / di­ 
vided by that for an isolated zone of length c + I.
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propriate stress intensity factor and r is the distance from the 
edge of the slip zone. Thus the average stress in an asperity of 
length c   I is

6 = r(K/K,)[c/l - (13)

where the numerator and denominator have been multiplied 
by K,, the stress intensity factor for an isolated slip zone, and T 
= TOO   T/ is the effective stress. (Equation (13) actually gives 
an estimate of the stress in excess of the residual friction 
value.) Rearranging and setting o   oull, the ultimate stress, 
yield

(14)

although, of course K/K, itself depends on c/l as shown in 
Figure 5. On the basis of laboratory experiments [e.g., Jaeger 
and Cook, 1976], a representative value for autt might be 103 
bars (= 102 MPa), and r is presumably in the range of typical 
stress drops, say, 10-100 bars (1-10 MPa). For r/ault equal to 
10~2 and 10~', (14) yields values of c/l equal to 1.006 and 
1.068, respectively, for the infinite periodic array. The corre­ 
sponding values of c/l for two collinear cracks are 1.003 and 
1.038. Hence c/l   1.006 seems to be a reasonable lower limit. 

Of course, the above estimates assume that the asperity re­ 
mains essentially elastic and because of the proximity of the 
slip zones needed to cause significant interaction, it is worth­ 
while reexamining the adequacy of this assumption. As men­ 
tioned earlier, the formulation which regards the fault-tip 
stress field as singular is equivalent to one which takes explicit 
account of departures from linear elasticity in a breakdown 
zone as long as the characteristic length of this zone is small 
by comparison with other lengths in the problems. Rice 
[19790] has estimated breakdown zone sizes from 11 mm to 1 
m based on laboratory experiments of sliding friction. If these 
results are representative, it seems likely that the asperity size 
will be much greater than the end zone size. For a slip zone 
length of 1 km and the lower limit for c/l - 1.006, the asperity 
length is 6 m. Rudnicki [1979], however, has suggested, based 
on model experiments of Barton [1972, 1973], that larger end 
zone sizes, perhaps of the order of a hundred meters, may oc­ 
cur in situ, and it is conceivable that asperities may be of this 
size. Unfortunately, there seem to be no accurate estimates of 
sizes of either asperities or breakdown zones in the field, and 
Rudnicki [1980] has discussed the difficulties of extrapolating 
friction experiments to the field. In view of these under- 
tainties, the approximation of a singular stress field seems ade­ 
quate. In any case, the stress field which is given by the result­ 
ing values for the stress intensity factors can be expected to 
describe adequately the average stress level in the asperity.

MOMENT AND STRESS DROP
Since the results are very different for the two models, the 

barrier and the asperity models, we discuss them separately. 
In the barrier model we compare the calculated moment and 
stress drop for the introduction of a segmented fault into a 
uniform state of stress with the corresponding quantities for 
an isolated fault or slip zone. In the asperity model the mo­ 
ment and stress drop due to failure of an asperity between 
existing slip zones are calculated. (Here 'failure' means that 
the stress is reduced to the residual friction value 17.) Again 
the results are compared with those for isolated slip zones. As

10

0.8 

0.6 

0.4 

0.2

C/J

Fig. 7. Apparent stress drop (based on the assumption of an iso­ 
lated slip zone) divided by actual stress drop for a fault having two 
segments of length / separated by the center-to-center distance c.

demonstrated earlier, the strain energy change and hence W0 
is completely determined, for a given fault length and effec­ 
tive stress, by the average displacement and consequently by 
the moment from (10). Thus despite the evident importance of 
WQ as a seismological parameter, the results here have been 
expressed in terms of moment and stress drop because the mo­ 
ment can be determined more directly from observations and 
because errors in the estimation of W0 (say, from (10)) result 
from errors in the stress drop.

Barrier Model

The moment due to introducing two widely separated slip 
zones of length / is simply 2A/,{/), where M, is given by (7). As 
the two slip zones become closer together, the moment in­ 
creases and the limiting value occurs when the slip zones are 
adjacent so that they approach a single zone of length 21. In 
this limit the moment is Mt{2l)   4M,{/). For intermediate 
cases it is necessary to evaluate the moment by using (5). For 
the two collinear slip zones shown in Figure 4a, the relative 
slip of the fault surfaces can be determined from expressions 
given by Erdogan [1962] and, as shown in the appendix, the 
average slip is

(15)

where X2 = E(m)/F(m) and m2 = 1 - a2/b2 . Hence from (5) 
the moment is

(a/b)2 - 2\2\ (16)

M2 divided by twice the moment for an isolated zone of length 
/ = b   a is plotted in Figure 6 as a function of c/l (where c   
a + b). As shown in Figure 6, M2   4M, when c/l   1 (i.e., a/b 
= 0) and M2 approaches 2M, as c/l approaches infinity (i.e., 
a/b = 1). Also plotted is M, (c + l)/2 M,{1). Figure 6 demon­ 
strates that the effect of interaction is very slight unless the ra­ 
tio of asperity size to slip zone length is extremely small. For 
example, for c/l   1.2 (ratio of asperity length to slip zone 
length is 0.2), the moment M2 differs by only 15% from the 
combined moments of two isolated zones of length /; for c/l   
2.0, the difference is only about 3%.

In calculating the moment it was assumed that the stress 
drop for each fault segment was T^,   T,. However, as noted 
earlier, the moment is the quantity which can be determined 
accurately by observations, whereas the stress drop is typically 
inferred from formulae like (7) which assume that the fault is 
a single isolated zone. Thus it is perhaps more relevant for ob­ 
servations to determine for a fixed moment and fault length
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Fig. 8. Moment due to failure of asperity between two slip zones 
divided by the moment due to uniform stress drop on an isolated sh'p 
zone of length c + I.

the ratio between the actual stress drop and the apparent 
stress drop inferred from (7). Equating the moments calcu­ 
lated from (6) by using (15) with T = &rlne and from (7) with / 
= 2b and r   &Tapp yields

1
(a/b? - 2A2

(17)

The reciprocal of this expression is plotted versus c/l [=(1 + 
a/b)/(\ - a/b)} in Figure 7. For very small asperity lengths 
the two stress drops are approximately equal, but more gener­ 
ally the apparent stress drop can significantly underestimate 
the true stress drop. For example, if c// = 1.2, the true stress 
drop is roughly twice the apparent value, but if the asperity 
length is equal to the length of the adjacent slip zones (c/l = 
2), the apparent stress drop is only 24% of the true stress drop. 

Rice [I979b] has used results for the infinite periodic array 
of collinear cracks to obtain a formula corresponding to (17) 
for a large number of segments. Rice's expression is (in our 
notation)

Ar,r n-n2

8 In
(18)

sec -(\-l/c)

where n » 1 is the number of slip zone segments. For c/l = 
1.01, 1.1, 1.2, and 1.5 this ratio is 0.30/z, 0.63n, 0.91/z, and 
1.78n, respectively. (The numerical values given by Rice 
[I919b] for (1 - //c) = 0.25, 0.1, and 0.01 are in error and 
should be replaced by 1.28/z, Q.67n, and 0.30/1, respectively.) 
Comparison of (18) with (17) reveals that the difference be­ 
tween the actual and apparent stress drops is greater for the 
larger numbers of slip zone segments. For c/l = 1.2, &rlru(, = 2 
&rapf, for two segments, but for a large number of segments, 
say, 20-25, the actual stress drop in each segment is 20-25 
times the apparent value.

The calculations in this section give specific numerical ex­ 
amples of the general result obtained by Madariaga [1979]: for 
a given moment and fault length the segmented fault repre­ 
sented by the barrier model has high stress drop than the iso­ 
lated fault.

Asperity Model

In this section we demonstrate that the failure of an aspe­ 
rity, which may occupy a very small portion of the fault plane, 
can cause a relatively large moment because of the additional 
displacement induced on the adjacent slip zones. Because the

body has been assumed to be linearly elastic, this moment is 
simply equal to the difference

AA/ = Mt{c + I)- M2 (19)

where M2 is given by (16) and M,{1) is given by (7). This dif­ 
ference divided by 2M,{1) is the difference between the two 
curves in Figure 6, and in Figure 8, AA//A/,{c + f) is plotted as 
a function of c/l. (For fixed stress drop, M2/M,(c + I) is equal 
to the reciprocal of the right-hand side of (17) so that Figure 7 
is also a plot of 1 - AA//A/Xc + /) )

For values of c/l greater than about 2, the ratio AAf/A/,{c + 
/) is roughly unity, and the moment AM differs from A/,{c + I) 
by less than 20%. Thus if the asperity length is greater than 
about one third of the total length which slips during failure 
of the asperity, the effect of the preexisting slip zones on the 
moment is relatively small (Figure 8). Note, however, that the 
moment due to failure of the asperity can be relatively large 
even if the asperity is very small. For example, when the aspe­ 
rity length is only 5% of the preexisting slip zone length (for c/ 
I = 1.05, the asperity length is 2% of the total length which 
slips during failure of the asperity), the moment due to failure 
of the asperity is 1.8 times the moment due to creating an iso­ 
lated slip zone of length / or about 40% of the moment due to 
breaking the entire slip zone of length c + /. As mentioned 
earlier, this relatively large moment is due to the additional 
displacement induced on the already existing slip zones. Be­ 
cause the strength of these zones has already been reduced to 
the residual friction level T/, these portions of the fault plane 
undergo zero stress drop during the failure of the asperity. 
The effect of this on the average stress drop will be examined 
next.

If the slip /ones are widely separated, the stress on the aspe­ 
rity will be roughly equal to the value of the stress applied in 
the far field (T«,) except very near the edges of the slip zones. 
Consequently, failure of the asperity will be accompanied by 
a stress drop approximately equal to TM   rf. If, however, the 
sh'p zones are closer together, the average stress on the aspe­ 
rity will exceed T«, (as demonstrated by Figure 5), and the cor­ 
responding stress drop due to failure of the asperity is in­ 
creased. Of course, the case of most interest is when the 
asperity between the slip zones is small by comparison to the 
slip zone length because this is the case for which the presence 
of the neighboring slip zones is likely to induce failure of the 
asperity. Specifically, the calculations will demonstrate that 
the stress drop averaged over the area of a small asperity can 
be very large, whereas the average over the entire zone which 
slips (during failure of the asperity) is small.

For the two collinear slip zones shown in Figure 4a, the 
stress on the plane between the slip zones can be determined 
from expressions given by Erdogan [1962]. The result is

- x2)
4- TV (20)

where   a < x < a, T^ is the stress applied in the far field, rf is 
the residual friction stress, and \2 = E(m)/F(m). Because the 
stress in the asperity is assumed to be reduced to rf by failure, 
the stress drop is simply given by the first term of (20). Con­ 
sequently, the average stress drop in the asperity is simply"

Af. '"' a / 
- x2) dx

(21)
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where T = TX   T/. This integral can be expressed as [Abra­ 
mowitz and Stegun, 1964, p. 596, equation 17.3.13]

Because the stress on other portions of the slip zones has al­ 
ready been reduced to 17, the stress drop here is zero (although 
there is, of course, additional slip caused by failure of the as­ 
perity). Consequently, the average stress drop for the entire 
slip zone is obtained by multiplying (22) by a/b or

Af7/, (23)

This relation between the average stress drop in the asperity 
and the average stress drbp of the slip zone is a special case of 
the more general relation established by Madariaga. (See 
equation (15) of Madariaga [1979].) It is straightforward to 
demonstrate from the properties of F(m) [e.g., Abramowitz and 
Stegun, 1964, equation 17.3.26] that Afai;p approaches infinity 
as a/b approaches zero (or c/l = 1), but that Af/7, = 0 in this 
same limit. Thus although the local stress drop in the asperity 
can be large, it occurs over such a small area that its contribu­ 
tion to the average stress drop of the entire fault is very small. 
AT///T and (Af^A)" 1 are plotted in Figure 9.

The stress drop defined by (20) is the true stress drop, that 
is, the stress on the fault plane prior to slip minus that after 
slip. As noted earlier, the true stress drop is generally not 
known; rather an apparent stress drop is inferred from (7). 
Thus, letting T = krapp and / = 2b in the right-hand side of (7) 
and setting the left-hand side equal to AA/ yield

ATW = r[2A? - (a/b)2} (24)

The ratio of the apparent stress drop to the true average stress 
drop is

~[2E(m)-(l-m2)F(m)]
77

(25)

where m~ = 1 - a2/b2 . This ratio varies monotonically from 
unity when c/l   1 (i.e., a/b   0) to 4/7r when c/l = co (a/b = 
1). Hence the apparent stress drop calculated from (7) is a 
good estimate for the true average stress drop.

Although the apparent stress drop does not differ greatly 
from the true average stress drop, both quantities under­ 
estimate the effective stress for small values of c/l. For c/l = 
1.01, krtopp underestimates the effective stress by a factor of 
more than 3 and Af//( by a factor of more than 5. Hence if the 
stress drop is assumed equal to the effective stress (as is the 
case for an isolated zone) for the purpose of computing W0 
from (10), this quantity may be underestimated by a signifi­ 
cant amount. If, however, c/l > 1.2, &Tapf, agrees with the ef­ 
fective stress to a factor of 2, and the difference is probably 
not significant.

CONCLUDING DISCUSSION
Although our model is too simple to describe a real fault in 

detail, it does make it possible to evaluate quantitatively the 
effects of the interaction of slip zones separated by asperities. 
The results are not surprising, but they do demonstrate the 
dramatic effects that small strong asperities can have on fault 
processes. In particular, the failure of a small strong asperity 
can cause a relatively large moment. This result is primarily 
due to the additional displacement, which is induced by fail­ 
ure of the asperity, on the adjacent already weakened slip

Fig. 9. Average stress drop due to failure of the asperity between 
two collinear slip zones divided by effective stress as a function of c/l. 
&fasp is the stress drop averaged over the width of the asperity (note 
that the reciprocal ofSTasp/r is plotted) and Af^, is the stress drop av­ 
eraged over the entire region which slips (see (22) and (23)). ATapp is 
the apparent stress drop inferred by assuming uniform stress drop on 
an isolated fault of length c + /.

zones. Consequently, slip on these zones might be said to 'pre­ 
pare' the fault for large relative displacements due to failure 
of the strong asperity. The failure of such an asperity can be 
associated with a large local stress drop, but the stress drop 
when averaged over the entire slipping region is approxi­ 
mately equal to the stress drop obtained by assuming slip oc­ 
curred on an isolated fault of the same moment and length. 
This result suggests itself as a possible explanation for why the 
observed stress drops for large earthquakes (which are usually 
an average over the entire slipping region) are relatively con­ 
stant despite possible heterogeneity of the fault zone [e.g., 
Kanamori and Anderson, 1975]. Moreover, unless the ratio of 
asperity size to fault length is very small, this stress drop is a 
good estimate (within a factor of 2) of the effective stress (T^ 
  Tf) and hence yields a good estimate of the strain energy 
change when used in the usual formula for an isolated fault. 

For convenience of analysis the fault plane has been ideal­ 
ized as consisting of regions which slip freely at a uniform re­ 
sidual value of the friction stress and of regions which slip 
only at the time of an earthquake. In actuality, there is likely 
to be a distribution of strength on the fault plane and a rela­ 
tively continuous variation of the slipping regions as the tec­ 
tonic stress is increased. Of course, the interactions in this case 
will be much more complicated than those described here. 
Nevertheless, the idealization considered here is a limiting one 
and hence can reasonably be considered to yield bounds for 
intermediate situations. Moreover, there is evidence from di­ 
rect observation of fault surfaces associated with seismic 
events in mines [McGarr et al, 1979a] that fault slip zones, at 
least in some instances, may not be planar. Again the analysis 
of this case is more complicated than that presented here, but 
some preliminary results have been obtained by Segall and 
Pollard [1980] and by McGarr et al [19796]. Three-dimen­ 
sional effects may also be important, and Madariaga has given 
some general results which are applicable in this case. Al­ 
though for the three-dimensional case there appears to be no 
simple calculation analogous to that presented here, McGarr 
[1981] has recently considered an approximate solution for an 
annular fault model. His predictions are comparable to those 
given here if the results are compared on the basis of fault 
area. More generally, the development of a fault plane may be 
a late stage in a process of inelastic deformation in a large re-
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gion. In this case an inclusion model like that suggested by 
Rudnicki [1977] may be appropriate, and the development of a 
fault may occur by the localization processes which were ana­ 
lyzed by Rudnicki and Rice [1975]. Indeed, Rice [1978] has 
suggested that the observations of Lindh et al. [1978] on the 
orientation of foreshocks relative to mainshock are consistent 
with this latter analysis. However, this misorientation may be 
related to the principal stress axes rotation caused by the fore- 
shocks themselves [Rudnicki, 1979].

This analysis has also assumed that failure results in a re­ 
duction of the stress to the residual friction value. In general, 
the stress may not be reduced to this value upon failure, and 
consequently the friction stress on the fault plane will not be 
uniform. A limiting case is the model of Das and Aki [1977a, 
b] in which a propagating fault can leave unbroken ligaments 
behind its tip. The calculations given here for the barrier 
model are relevant to this case, but they are purely kinematic 
in nature, and for a more detailed analysis it would be neces­ 
sary to introduce a fracture criteria. Moreover, for fault 
lergths which are comparable to the distance to the free sur­ 
face or boundary of the seismogenic region, the details of 
propagation are likely to be affected by whether the boundary 
conditions are idealized as prescribed displacements or 
stresses (Freund, 1979].

In spite of all the limitations of the present analysis, it is 
useful in demonstrating the magnitude of the effects that in­ 
teracting slip zones may have in fault processes.

APPENDIX
The relative displacement for the two collinear slip zones 

(Figure 4&) can be shown from expressions given by Erdogan 
[1962] to be

(s2 - b2\2) ds
[(s2 - a2}(b2 - s2)]"2

where A2 = E(m)/F(m), m2 = 1 - a2/b\ and E(m) and F(m) 
are the complete elliptic integrals defined following (11). This 
integral can be expressed as

8(x) = 2(1 - vyrpT '£[£(<>, m) - X2F(<j>, m)] (Al) 

where
/ *

F(& m)= I ( 1 - m2 sin2 <f>)- l/2 dQ 
Jo

£(<!>, m) = /(I - m2 sin2 0) l/2 dO 
Jo

are elliptic integrals of the first and second kinds, respectively 
[Abramowitz and Stegun, 1964], and

sn m~2[l - (x/b)2}

The average displacement is simply the integral of S(x) di­ 
vided by b   a. Evaluation of the integral can be accomplished 
by using the results of Tranter [1961] or of Lowengrub and 
Srisvastava [1968] for the corresponding tensile crack prob­ 
lem, and the final expression can be written in the form of 
(15).
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Abstract

This note clarifies the relationships among various expressions for 

the energy radiated by elastodynamic seismic sources. The radiated energy 

can be expressed in terms of the far-field particle velocities provided 

that the stress-particle velocity relationship asymptotically approaches 

the plane wave relationship with increasing distance from the source. 

This condition is satisfied for all sources that can be characterized by 

a moment density tensor. For the case in which the source can be charac­ 

terized as a point, i.e., the wave lengths of all emitted radiation are 

much greater than source dimensions, the radiated energy is expressed in 

terms of the moment tensor. The relation between these far-field repre­ 

sentations and Kostrov's (1974) representation of radiated energy in terms 

of fault surface traction and particle velocity is established. Kostrov's 

representation is arranged in various forms to reveal the source of radi­ 

ated energy as the deviations of the fault surface tractions and particle 

velocities from the values which would occur during quasistatic fault 

motion between the same end states. Moreover, the excess of the static 

strain energy change over the work done by the fault surface tractions, 

called W by Kanamori (1977), is shown to be a good approximation to the 

radiated energy when fault propagation speed is near the Rayleigh wave 

velocity and the time rate of change of fault surface traction is small.



Introduction

The determination of the energy released by an earthquake is one of the 

fundamental problems of seismology. Typically, empirical estimates of 

energy changes associated with earthquakes are obtained in two ways 

(Bath, 1966): from the transient dynamic displacements inferred from exami­ 

nation of seismograms or from measurements of the static deformation in the 

epicentral region. The first method yields an estimate of the seismic wave 

energy radiated to the farfield whereas the second yields an estimate of the 

energy which has gone into overall deformation of the region around the source. 

Although the energy determined by the second method is frequently used as an 

approximation to that determined by the first, these energies are not, in 

general, equal and the relationship between them is often unclear.

The purpose of this note is to present various expressions for the radi­ 

ated energy in order to illuminate its origin in seismic faulting and to clarify 

the relationship of radiated energy to other energies involved in earthquake 

faulting. The treatment is, however, limited to infinite linear elastic solids 

which are isotropic and homogeneous. Although such conditions are, of course, 

not satisfied in the earth, this idealization has nevertheless proven to be 

useful both as an approximation and in providing guidance in more realistic 

problems.



Definition of Radiated Energy

The radiated energy is defined here as

R   I J [-"y YJ "iE

-» s

where u. is the change in displacement and a., is the change in stress 

associated with u.. The remaining symbols in (1) are defined as follows: 

t is time, the superposed dot denotes time differentiation, S is a spheri­ 

cal surface of radius r centered at the source with r » £, where £ is 

a characteristic source dimension, and y. is the unit normal to S 

directed outward from the source. The integrand of (1) is simply the rate 

of work by the material inside S on the material outside S and this agrees 

with the fundamental definition of energy flow. If the stress change a.. 

and the particle velocity u. are proportional to r as r goes to

infinity in any fixed direction, then E has a finite nonzero value in
K

this limit.

An expression for radiated energy which is frequently used in seismology 

(e.g., Haskell, 1964) is

CO

r r o o
E = p[c, (u. Y.) + c (u. m.r]dS dt (2) 
KJJ ail sii

-oo S

where p is the density, c and c are the dilatational and shear wave
vl o

speeds, respectively, and m. is the unit tangent vector to S in the 

direction of the shear traction. The definition (2) follows from (1) if

u± = OCr'1 ) (3)

and

-2 
a.. Y. + P u - Y. Y. C J + P u . m. m. c = 0(r ) (4)

as r -> °° in any fixed direction: Because the area of S is proportional



2 -2 
to r , terms which decay faster than r do not contribute to (1) in

the limit of r -> °°. The condition (4) implies that far from the source 

waves become asymptotic to plane waves in the sense that the traction and 

particle velocity are related as they are for plane waves or, in other 

words, that near the wavefront the curvature of the wave front is negligible. 

The equivalence of (1) and (2) has been discussed for the special cases of 

harmonic plane waves (Bullen, 1963; Sagisaka, 1945) and spherical waves 

(Yoshiyama, 1963) and it has been demonstrated by direct calculation for 

a double couple source (e.g., Dahlen, 1974), However, in the next section, 

it will be shown that (4) is satisfied, and hence (1) and (2) are equivalent, 

for any source which can be characterized by a moment density tensor.



Far-Field Representation

The usual approach of source theory (e.g., Archambeau, 1968; Backus 

and Mulcahy, 1976) is to model inelastic processes due to faulting, explosions, 

etc. as causing a region of an elastic body (the source) to undergo a stress- 

free change of size and shape without altering the elastic properties of the

T region. If this change of size and shape is expressed as a strain e (?,t)

then the seismic moment density tensor is defined by (e.g., Kostrov, 1970; 

Aki and Richards, 1980, p. 59)

mij (5' t} = Cijla £L ̂  (5)

where C..,   is the tensor of elastic moduli. For an isotropic elastic solid
ijk£

the modulus tensor is given by

C. M = y(6.. 6. n + 6. n 6.. ) + A6. . 6. n (6) 
ijk£ ik j£ i£ jk ij k£

where y is the shear modulus and A is the Lame constant.

The displacements due to a given m.. (x,t) are then calculated as those
ij

due to an effective body force

- Bm^/Bx.. . (7) 

The displacement field can be written as the sum

u.(x,t) = ud (x,t) + uS (x,t) (8) 
i ~ i i

d s 
where u. (x,t) and u. (x,t) are the separate contributions from dilatational

and shear waves, respectively. The far-field representations of u. (x,t) and

g
u. (x,t) are as follows:~



Y Y Y * ( ' * ' r/c + Y '. 3 i j k jk ' d4fTp r c, J J Jd v
1 1 <9>

U i = ~       3 [ I (6 ij Yk + 6 lk V - Yi Yj Yk ]
4frp r c J J J 

s

f 3 
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where r is the distance from a point in the source region to the 

observation point, and the integral is over the volume of the source 

region. The expressions (9) are accurate to terms of order £/r and 

A/r where £ is a characteristic source dimension and A = 27rc/u) is 

the wavelength of the emitted radiation associated with the frequency GO.

It is apparent from (9) that the particle velocity u. decays as r 

and, consequently that (3) is satisfied. To verify (4) it is only necessary 

to show that the left hand side of (4) vanishes when evaluated from displace­ 

ments given by (9) -since only terms of order r have been included in (9) . 

The stresses corresponding to (9) are, to the same order of approximation,

[2

> r; C s ) [ \

- 2

d s where the contributions from u. and u. have been given separately, and

T (t, r; c) =   -  T (C, t - r/c + Y ' C/c)d. (11) 
k* 47TP r c4



Substitution into the left-hand side of (4) yields

9
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(12)

where the symmetry of I, p (due to the symmetry of m, (x,t))has been

1/2 
used. From the definition of c, = [(2y + A)/p] , it is immediately

clear that the first term, due to the contribution of u. vanishes.

That the second vanishes as well can be seen from the definition of

1/2 
c = (y/p) and by noting that Q = y, I, is a vector with a
S J6 K ivX/

component in the direction of m that is given by

m(m   Q) - Q - Y(Y ' Q) (13)

where y   Q = Q y   The component of Q orthogonal to both m and y
p p ~ ~

vanishes because there is zero shear traction on S in this direction. 

Thus, the terms of order r in the left hand side of (4) vanish and 

consequently (2) is a precise expression for the radiated energy in the 

limit that the surface S recedes to infinity. The radiated energy can 

be expressed as

3 ) 2 » ( > t-^ +   /c)d dsdt5
d -°° S v v J

(14)

3 ) 
n., (C» t - r/c +Y   £/c )d C) dS dt
J JV *** o '*''*' O ***/

s -°° S v I 

Also, if the Fourier transform of a function g(t) is defined by

g(o>) = J g(t) e~ ia)t dt , (15)

 oo

then the Parseval identity

oo oo

.2 r o
g(u)| dO) = 27T [g(t>] dt (16)



can be used to express E in terms of integrals of the spectral density
K

of m . (Boatright (1980) has recently used this representation to 
Jk

advantage in a study of spectral theory for circular seismic sources).

It should be emphasized that the equivalence of (1) and (2) does not 

require that the source be a "point source", that is, that the dimensions 

of the source be much smaller than the wavelengths of any waves emitted by 

the source (£ « X). Rather, it is required only that the distance between 

S and the source be large compared to source dimensions and wavelengths 

(r » £, r » A). The operations indicated by (2) seem possible to perform 

observationally (assuming, of course, that propagation effects due to 

departure of earth from a homogeneous elastic medium can be handled and 

neglecting effects due to finite boundaries): particle velocities can be

measured in the far field and integrated to get E . However, as demon-
R

strated by Kostrov (1968) (also see Rice, 1980) in the case of slip on 

a planar fault, the complete spatial variation of slip over the fault 

plane cannot be resolved from far-field observations. Evidently, the 

shorter wavelength information necessary to resolve completely the fault

slip and not transmitted to the farfield does not contribute to E .
K

Nevertheless, it is not possible to express the radiated energy in terms 

of the seismic moment tensor, which is defined by

M (t) = j m± . (§, t)d3§ ' . (17) 

V

If, however, attention is restricted to wavelengths which are large by 

comparison to source dimensions (i.e., sufficiently low frequencies) the 

source is perceived in the far-field as a point and the radiated energy 

can be expressed in terms of M.. .
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Point Source Representation

As shown by Kostrov (1970), the point source representation corresponds 

to neglecting the time differences y   £/c between different points in the 

source region. In this case the integrals in (9) simply define the time 

derivative of the seismic moment tensor (17) and (9) can be rewritten as

du. =
1 , J 1 4irp c, r 

d

Y Y (t ~ r/c)

s u. =
1

(18)

S

(t-r/cs )

Substituting these expressions into (2) yields

oo , . 5

16TT

r 1

2 5 (t-r/c)]'

(19)

where dS has been replaced by r dft . 

be rewritten by using the relation

The second square bracket can

(20)

which follows from (13) by using the symmetry of M, , setting

Q = y ' M, and taking the magnitude of both sides. Using (20) i-n (19)

yields

ER = 772  5
loTT 0 C

S -oo

M 
Tcp

(t-r/cs)]

(21)

dt



Because the arguments of K depend only on time for a fixed radius r ,
KJC

the integrals over the spherical surface involve only the components of 

the unit normal. These integrals have the form

Yi YJ \ *i dn (22)
fi 

The integration is most easily accomplished by recognizing that the

result must be an isotropic tensor and, thus, must comprise sums and 

products of Kronecker delta's:

I...   = C- 6. . 6.   + c 0 6.. 6. 0 + c_ 6. 0 6.. (23) 
ijk£ 1 ij k£ 2 ik j£ 3 i£ jk

where c- , c , c_ are constants. Furthermore, because (22) is 

symmetric with respect to interchange of any two indices, c.. = c 0 = c~ = c. 

The constant c can be determined by integration for a particular component, 

say l-i-ioo = c and tne result is

I...   = l (<S. . «,   + <S., «.  + 6. 0 6.. ) (24)ijk£ 15 ij k£ ik j£ i£ jk

Using this result and the corollary,

I..,. = Y. Y. dfl =  £* 6.. , (25) 
ijkk J 'i r j 3 ij

in (21) yields

/ \ 5 °° / ' \ 

60, P c^ ER = PL)
^ ' -~ l

la M Ct-r/c ) M (t-r/c - [" (t - r/c )1 2 ! dt (26)

This expression can also be rewritten by introducing the deviatoric 

part of M.. , that is,
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V3
so that tr M1 = M.1 . =0. Then (26) becomes

-w \f \fJVJX

5 0°

(
^ - / \ 
  j <2 M'. (t - r/c )M*. . (t - r/c ) + ^r [R (t - r/c ) ] > dt 
Cd / -I ( 1J 1J )

oo

(28)
+ 3 I M' (t^r/c) M' (t-r/c )dt 

ij s ij s

If the source disturbance is confined to a surface of displacement 

discontinuity, as is typically the case in modelling fault rupture, the 

seismic moment density tensor has the form (Burridge and Knopoff, 1964; 

Kostrov, 1970; Aki and Richards, 1980, p. 52)

mij ( ~' ° = Cijk£ (?} nk ( ~ } AU£ ( ~' t} 6D (V (29) 

where n is the local unit normal to the surface, Au is the displacement
X,

discontinuity, and 6^(8,,) is a Dirac singular function which converts an
D r

integral over a volume containing S to an integral over the surface S .
r r

In a homogeneous, isotropic elastic solid the modulus tensor is given by (6) 

and, in this case, the moment density tensor is

m.. (x, t) = [ y (n. Au. + n. AU.) + A n, Au 6..]6_ (S_) (30)
lj~ JllJ KK.lJL»r

For shear faulting n. Au = 0 an(^ if tne fault surface is assumed to be 

flat and to have a normal in the x» direction,

m± . (x, t) = y (6 Au± + 6 2i AUj)6D (Sp ) (31) 

The seismic moment (17) is

= y I [6 ku± (? 1 , ? 3 , t) + 6 2± AUj (q, Z^, t)] d^d^ (32) 

SF
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If it is further assumed that slip is only in the x.. direction,

Au. = Au 6.,, and M 9 = M9 - = M are the only non-zero components of

the seismic moment tensor:

M(t) = y Au (£. , £ Q , t) d£, d£ 0 < 33 )

S F 

The expression for the energy radiated by a point source (28) then

reduces to
5 °° °°

_ / C \f"9 f "9
30-Frp c E_ = 21  } M z (t-r/c,)dt + 3 M z (t-r/c )dt (34) 

S \ C d/  " d J s
\ /  C»  00

Alternatively, E can be expressed in terms of the Fourier transform of 

M by using (15) and (16).
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Fault Surface Representation

If the source can be idealized as a propagating crack, then, as shown 

by Kostrov (1974) the radiated energy can be expressed in terms of the

fault surface traction and particle velocity. The resulting form for E
R

is useful for assessing the physical sources of radiated energy. Let S 

be a surface coinciding with the fault surfaces (excluding the extending 

edges), S be a tube enclosing the crack edges and n be the unit normal

directed into the material bounded by S, S,. and S (Hence n = - y on S
i o ~* ~

and n is the outward normal to the crack surfaces on S f ). A general power 

balance for this material requires that

      f
a . n. u± dS - K - U = F(t) + a n. u dS (35)

j j j j j
S SF 

  JL *
where K and U are the rates of increase of kinetic energy and strain 

energy, respectively; and F(t) is the time rate of energy flow to the 

extending fault edges. The stress a"., is the total stress, that is
J

a". . = a. . + a"!. (36) 

and the total displacement is

u. = u. + u? 
111

with ii. = 0. The left hand side of (35) is the excess of the total power 

input over the increase in total internal energy. The right hand side can 

be regarded as dissipation due to energy flux to the extending fault edges 

(first term) and dissipation due to the work of the fault surface tractions 

(second term). More precisely, the energy flux to the extending edges is 

defined as (Freund, 1972a; Kostrov, 1974)

  f   1     1 
F(t) = lim {a.. n. u. + [ ± a.. u. . + -£ u. u.]v} dS 

S -> 0 J ^J 1 ^ iJ i»J * 11 
o S 

o
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where v is the normal velocity of the fault edge in its own plane. The 

contribution from F(t) arises because the stress and particle velocity 

are singular at the edge of an extending crack in a linear elastic solid. 

Although this singularity is sometimes regarded as unrealistic, the energy 

flux can be given a simple physical interpretation as the negative of the 

work of unloading the fracture surfaces, or the energy which is needed to 

overcome the fracture resistance of the material just ahead of the fault 

edge (Freund, 1972a; Kostrov, 1974). Specific forms for F(t) have been 

given for semi-infinite cracks (or finite cracks prior to reflected waves) 

by Freund (1972b) for plane strain extension (Mode I), by Fossum and 

Freund (1975) for plane strain shear (Mode II) and by Atkinson and 

Eshelby (1968 for antiplane shear (Mode III). Because the initial stress 

is nonsingular at a point on the fault edge for any nonzero amount of 

fault expansion at that point, the energy flux into the edge depends only 

on the incremental stress and displacement, i.e., F(t) may be replaced by 

F(t) in all cases.

Equation (35) can be rearranged by substituting (36) and using the 

definition of radiated energy (1). The result is

  o". . n. u. dS - K - U = F(t) + F. . n. u. dS 
R J ij J i J ij j i

S SF 

Integrating in time and recognizing that the kinetic energy vanishes in

the initial and final static states yield the following expression:

ED + f a.°. n. ufinal dS + (U,. - - U. .... J 
R J ij j i final initial

S
(37)

F(t)dt - | a.. n. u. dS dt
J j j

-co -co Sp

For quasistatic propagation E = 0 and (37) reduces to a formula for
R

the change in strain energy:
CO CO

U,. , -U. ._. - + [ o~.°. n. ufinal dS =- I [ [o~. . n.u.] dS dt - f F (t) dt (38) 
final initial Jijji JJijjio J °

S __ /-» __ 
-co S,, -°°
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where the subscript "o" denotes the value during quasistatic extension. 

The integral over S is frequently neglected by assuming S coincides with 

the earth's surface and, hence, is traction-free. However, this assumption 

is not needed to obtain the following expressions for radiated energy. Sub­ 

tracting (38) from (37) yields

ER = {[n. a., u.] --[n. F. . u ]} dS dt + {F (t) -F(t)} dt (39)
J J J J J J J

-oo Sp -oo

where the superposed bars can be omitted in this equation. The integrand 

of the second term is the difference in energy flux to the crack-tip during 

quasistatic and dynamic propagation of the fault edge and the integrand 

of the first term is the difference in the work rate of the fault surface 

tractions (behind the fault edge) during quasistatic and dynamic extension. 

If the fault surface tractions are bounded the first term of (39) can be 

integrated by parts. The result is

E = {[n. a.. u.] - [n. F. . u.] } dS dt + [F (t) - F(t)]dt (40)
K J J J !J 1 J 1J 1 O

where the integrated terms vanish because the initial and final static states 

are fixed and the superposed bars can again be omitted. This expression is 

essentially that given by Kostrov (1974, eq. 2.26), although he does not

write it in this way. This form for E makes clear the role of the
R

time-dependent surface tractions in radiating energy.

An alternative form for the radiated energy can be obtained by using 

(36) in the first term on the right hand side of (38). The result is
oo

[F. . n. u.] dS dt = [ [ [a., n. u.] dS dt + [ F.°. n. ufinal dS (41) 
1 13 J i o J J 13 3 i o J 13 3 i

 °° S F -°° S F S F 

If a., depends on time only through u. , that is

a., (x, t) = a., [x, u.(x,t)] , then 
13 13 ~ i ~
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.. n. u.J dS dt - f[(a., n.) ufinal ]dS (42) 
ij J i o J ij j ave i

- SF SF

where this equation can be used to define the average traction (a.. n.)13 j ave

In the special case where a., n. is proportional to u.

(Q-M n ->«  = T fK- n -)<- -, + (a., n.). . . .] . (43) ij j ave 2 13 3 final ij j initial

Note that (a., n.) . is not the traction existing ahead of the 

extending fault edge, but rather that which exists on the fault surface 

just after the passage of the edge. Noting that

and using (42) in (41) yield

[o". . n. u.] dS dt = [(o" . n.) u.] dS dt 
13 j i o J J 13 3 ave i o

Consequently, (38) can be written as follows:

00 00

U,. , -U. .«..., + [ 0".°. n. ufinal dS = [ I [(a"., n.) u.] dS dt - [ ¥ (t)dt final initial J ij j i J J ij j ave i o Jo

S ~°° S F "°° (44)

If F and the integral over S are assumed to be negligible, this 
o

equation reduces to the usual formula for strain energy change (e.g. 

Dahlen, 1974; Aki and Richards, 1980, p. 57). Subtracting (44) from (37) 

reveals that an alternative expression for the- radiated energy is
00 00

E = f f {[F. . n.) u ] - [o". . n. u.]} dS dt + f {? (t) - ?(t)} dt (45) 
R J J ij 3 ave i o ij j i J o

-oo S -°°
F 

where again the superposed bars can be omitted.

If the fault surface tractions are time-independent (except possibly 

in a region near the fault edge which is small compared with the overall
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length), the first term of (39),(40) and (45) vanishes and the radiated 

energy is simply

(46)

The expression for the radiated energy used by Husseini and Randall (1976) 

is a special case of (46). When the crack propagation speeds are near the 

limiting velocities (Rayleigh wave speed in plane strain or shear wave 

speed in antiplane strain), as is typical for observed earthquake faults, 

F(t) is small compared with F (t). Thus, in this case, the radiated 

energy is approximately equal to

E_ = F (t)dt (47)
K. I O

 oo

The meaning of this equation can be clarified by returning to (38) and 

recognizing that the first term on the right hand side is the work done 

by the fault surface tractions during quasistatic fault extension. In 

the simplest models of shear faults, these tractions are assumed to be 

equal to a uniform value of the friction stress and the corresponding 

work done is taken to be consumed in the generation of heat (e.g., Orowan, 

1960). Thus, the right hand side of (47) is the excess of the strain 

energy change over the quasistatic work of the fault surface tractions at 

least if the integral over S in (38) can be neglected. In the case of 

a shear fault with uniform stress drop, Kanamori (1977) has called this 

excess W and has argued on an empirical basis that for large earthquakes 

W is a good approximation to the radiated energy.

If the stress near the fault edge is not idealized as singular, the

terms F(t) and F (t) vanish and the entire contribution to E is from
O K

the first term of (39), (40) and (45). This is typically the case in
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dislocation models for which the rise time is finite (e.g., Haskell, 1964). 

Hence, the radiated energy is due to the deviation of the actual fault 

surface tractions during the dynamic event from the average fault plane 

tractions. It is interesting to note that for the configuration con­ 

sidered by Haskell (1964) (introduction of a rectangular dislocation loop 

of constant relative displacement) the strain energy change Uf . 1 -U. . . , 

is unbounded but the radiated energy (which Haskell computed by using (2)) 

is finite. Because F(t) and a". . are zero, the remaining term in (37) 

must also be unbounded. However, the sum of this term and strain energy

change must be finite in order that E is finite.
R
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Concluding Discussion

Various expressions for the energy radiated by seismic sources in linear 

elastic solids have been examined for the purpose of clarifying the meaning 

of radiated energy and its relation to seismic parameters. The term "earth­ 

quake energy" often seems to be applied either to E , the radiated energy,
R

or to W , the excess of the strain energy change over the work done by the 

fault surface tractions during quasistatic fault extension (see (38) and (47)). 

However, these two quantities are equal only in special cases. As indicated

by (40), E depends on the time dependence of the fault surface tractions 
R

and particle velocities and, in particular, on the difference between the 

values during the actual dynamic process and those which would occur if the 

same fault extension occurred quasistatically. Hence, as pointed out by 

Kostrov (1974), the radiated energy cannot, in general, be determined from

differences in the static end states. Nevertheless, E can be determined
R

by the measurement and integration of farfield particle velocities (2) even 

though this information is not sufficient to resolve the spatial distribution 

of fault slip. If, however, the fault surface tractions are assumed to be time 

independent, as in the case of many simple fault models, and the fault rupture

speed is such that the second term in (46) is small, then E can be approx-
R

imated as in (47), where the righthand side of this equation is the quantity 

Kanamori (1977) has labelled W . This quantity does depend only on the dif­ 

ference between static end states.

Kanamori (1977) has argued that for large earthquakes W is a good 

approximation to the energy computed from the Gutenberg-Richter energy magni­ 

tude relationship (E = 1.5 M + 11.8 where M is the magnitude). More specif­ 

ically, Kanamori (1977) showed that a magnitude computed using W as the
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energy in the Gutenberg-Richter relation agrees well with the surface wave 

magnitude. The Gutenberg-Richter relationship (Gutenberg and Richter, 

1942) was apparently established by estimating empirically the integral 

in (2) and hence the energy in this relation is an estimate for E .
R

However, it is not clear whether Kanamori's (1977) results should be con­ 

strued as evidence that the conditions for which (47) applies (time inde­ 

pendent fault surface tractions and rupture speed near the limiting value) 

are satisfied for large earthquakes. Certainly, it seems unlikely that 

fault surface tractions would be time independent during faulting but it 

is possible that the contribution to the radiated energy is small.

Although the dislocation model of Haskell (1964) is often used as a 

basis for discussing energy radiation in earthquakes, it would seem to 

have some deficiencies in this regard. (Related deficiencies of the Haskell 

model have been discussed by Madariaga (1978).) As mentioned earlier, the 

strain energy change for this configuration is infinite and hence the ratio 

of radiated energy to strain energy chanoe is .finite would be more usefulT
for studying the relation between W and E_ .

° R
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